Tian Jingru, Shi Liqing, Zhang Dingyao, Yao Xu, Zhao Ming, Kumari Snehlata, Lu Jun, Yu Di, Lu Qianjin
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
Cell Mol Immunol. 2025 Jan;22(1):83-96. doi: 10.1038/s41423-024-01240-z. Epub 2024 Dec 3.
Systemic lupus erythematosus (SLE) is a complex, multiorgan autoimmune disorder. Although it is widely believed that SLE originates from immune cell dysregulation, the etiology of SLE is not yet clear. Here, we propose a new theory in which SLE can be directly initiated by molecular alterations in keratinocytes rather than immune cells. We found that the level of peroxisome proliferator-activated receptor gamma (PPARγ) is substantially reduced in the skin lesions of patients, and replicating this reduction in mice led to rapid disease onset with multiple hallmarks of SLE. As PPARγ decreases in keratinocytes, which is accompanied by increased occupancy of interferon regulatory factor 3 at the type I interferon locus, dendritic cells (DCs) are recruited to the epidermis and are activated by keratinocyte-secreted type I interferon. These activated DCs migrate to local draining lymph nodes, where they activate CD4 T cells in a non-MHC II-dependent manner, promoting their differentiation into effector T cells and thus contributing to disease onset. Our study revealed that the dysregulation of keratinocytes can be a pathogenic driver of SLE and describes a new mouse model that mimics human SLE. Our data also emphasize the pivotal role of skin immunity in the onset of systemic autoimmune disease.
系统性红斑狼疮(SLE)是一种复杂的多器官自身免疫性疾病。尽管人们普遍认为SLE起源于免疫细胞失调,但SLE的病因尚不清楚。在此,我们提出一种新理论,即SLE可直接由角质形成细胞而非免疫细胞的分子改变引发。我们发现,患者皮肤病变中过氧化物酶体增殖物激活受体γ(PPARγ)水平显著降低,在小鼠中复制这种降低会导致疾病迅速发作,并伴有SLE的多种特征。随着角质形成细胞中PPARγ减少,同时伴有干扰素调节因子3在I型干扰素基因座上的占有率增加,树突状细胞(DCs)被招募至表皮,并被角质形成细胞分泌的I型干扰素激活。这些活化的DCs迁移至局部引流淋巴结,在那里它们以非MHC II依赖的方式激活CD4 T细胞,促进其分化为效应T细胞,从而导致疾病发作。我们的研究表明,角质形成细胞失调可能是SLE的致病驱动因素,并描述了一种模拟人类SLE的新小鼠模型。我们的数据还强调了皮肤免疫在系统性自身免疫性疾病发病中的关键作用。