Chakraborty Rayan, Sercel Peter C, Qin Xixi, Mitzi David B, Blum Volker
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.
Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, Colorado 80401, United States.
J Am Chem Soc. 2024 Dec 18;146(50):34811-34821. doi: 10.1021/jacs.4c13597. Epub 2024 Dec 3.
Semiconductors with large energetic separation Δ of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (Δ > 400 meV) and spin textures with extremely short spin helix lengths ( ∼ 5 nm). A simple bond angle difference captures the distortion-driven global asymmetry and correlates quantitatively with first-principles computed spin-splitting magnitudes. A multiband effective mass model that accounts for interlayer coupling provides a unified understanding of how specific symmetry elements dictate layer- and state-dependent spin polarizations within these multi-quantum-well structures. The general symmetry analysis methodology presented here, together with the potential for rationally creating 2D-OIPs with unique symmetry patterns, opens a pathway to design semiconductors with outstanding spin properties for next generation opto-spintronics.
具有大的能量子带能量分离Δ且具有不同自旋期望值(自旋纹理)的半导体是实现对自旋输运和自旋光电子特性进行控制的关键目标。虽然由对称性决定的 Rashba 自旋分裂和相关自旋纹理的典型情况仍然是设计未来基于自旋输运的量子信息技术最受探索的途径,但通过利用具有战略针对性的晶体对称性来控制超越 Rashba 范式的自旋物理具有重大前景。在本文中,我们展示了如何打破二维有机-无机钙钛矿(2D-OIPs)中基于八面体旋转的结构畸变的传统范式,从而促进异常大的自旋分裂(Δ>400 meV)和具有极短自旋螺旋长度(约5 nm)的自旋纹理。一个简单的键角差捕获了畸变驱动的全局不对称性,并与第一性原理计算的自旋分裂幅度定量相关。一个考虑层间耦合的多带有效质量模型提供了对特定对称元素如何决定这些多量子阱结构中层依赖和状态依赖的自旋极化的统一理解。这里提出的一般对称性分析方法,以及合理创建具有独特对称模式的 2D-OIPs 的潜力,为设计用于下一代光自旋电子学的具有出色自旋特性的半导体开辟了一条途径。