Suppr超能文献

基于混合深度学习的皮肤癌分类以及用于皮肤病变分割的RPO-SegNet

Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation.

作者信息

Pandurangan Visu, Sarojam Smitha Ponnayyan, Narayanan Pughazendi, Velayutham Murugananthan

机构信息

Department of Artificial Intelligence and Data Science, Velammal Engineering College, Chennai, Tamil Nadu, India.

Department of Computer Science and Engineering, Velammal Engineering College, Chennai, Tamil Nadu, India.

出版信息

Network. 2025 May;36(2):221-248. doi: 10.1080/0954898X.2024.2428705. Epub 2024 Dec 3.

Abstract

Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates. An incorrect diagnosis can be fatal to the patient. To tackle these issues, this article proposes the Recurrent Prototypical Object Segmentation Network (RPO-SegNet) for the segmentation of skin lesions and a hybrid Deep Learning (DL) - based skin cancer classification. The RPO-SegNet is formed by integrating the Recurrent Prototypical Networks (RP-Net), and Object Segmentation Networks (O-SegNet). At first, the input image is taken from a database and forwarded to image pre-processing. Then, the segmentation of skin lesions is accomplished using the proposed RPO-SegNet. After the segmentation, feature extraction is accomplished. Finally, skin cancer classification and detection are accomplished by employing the Fuzzy-based Shepard Convolutional Maxout Network (FSCMN) by combining the Deep Maxout Network (DMN), and Shepard Convolutional Neural Network (ShCNN). The established RPO-SegNet+FSCMN attained improved accuracy, True Negative Rate (TNR), True Positive Rate (TPR), dice coefficient, Jaccard coefficient, and segmentation analysis of 91.985%, 92.735%, 93.485%, 90.902%, 90.164%, and 91.734%.

摘要

皮肤黑色素病变通常表现为皮肤上的微小斑块,这是由黑素细胞过度生长所影响。全球皮肤癌患者数量正在增加。准确及时地识别皮肤癌对于降低死亡率至关重要。错误的诊断可能对患者致命。为了解决这些问题,本文提出了用于皮肤病变分割的循环原型对象分割网络(RPO-SegNet)以及基于深度学习(DL)的混合皮肤癌分类方法。RPO-SegNet由循环原型网络(RP-Net)和对象分割网络(O-SegNet)集成而成。首先,从数据库中获取输入图像并将其转发到图像预处理。然后,使用所提出的RPO-SegNet完成皮肤病变的分割。分割完成后,进行特征提取。最后,通过结合深度最大池化网络(DMN)和谢泼德卷积神经网络(ShCNN),采用基于模糊的谢泼德卷积最大池化网络(FSCMN)完成皮肤癌的分类和检测。所建立的RPO-SegNet+FSCMN在准确率、真阴性率(TNR)、真阳性率(TPR)、骰子系数、杰卡德系数以及分割分析方面分别达到了91.985%、92.735%、93.485%、90.902%、90.164%和91.734%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验