Suppr超能文献

用于医学报告生成和视觉问答的视觉语言模型:综述

Vision-language models for medical report generation and visual question answering: a review.

作者信息

Hartsock Iryna, Rasool Ghulam

机构信息

Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.

出版信息

Front Artif Intell. 2024 Nov 19;7:1430984. doi: 10.3389/frai.2024.1430984. eCollection 2024.

Abstract

Medical vision-language models (VLMs) combine computer vision (CV) and natural language processing (NLP) to analyze visual and textual medical data. Our paper reviews recent advancements in developing VLMs specialized for healthcare, focusing on publicly available models designed for medical report generation and visual question answering (VQA). We provide background on NLP and CV, explaining how techniques from both fields are integrated into VLMs, with visual and language data often fused using Transformer-based architectures to enable effective learning from multimodal data. Key areas we address include the exploration of 18 public medical vision-language datasets, in-depth analyses of the architectures and pre-training strategies of 16 recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for assessing VLMs' performance in medical report generation and VQA. We also highlight current challenges facing medical VLM development, including limited data availability, concerns with data privacy, and lack of proper evaluation metrics, among others, while also proposing future directions to address these obstacles. Overall, our review summarizes the recent progress in developing VLMs to harness multimodal medical data for improved healthcare applications.

摘要

医学视觉语言模型(VLM)结合了计算机视觉(CV)和自然语言处理(NLP)技术,用于分析视觉和文本医学数据。我们的论文回顾了专门为医疗保健领域开发的VLM的最新进展,重点关注为医学报告生成和视觉问答(VQA)设计的公开可用模型。我们提供了NLP和CV的背景知识,解释了这两个领域的技术如何集成到VLM中,视觉和语言数据通常使用基于Transformer的架构进行融合,以便从多模态数据中进行有效学习。我们探讨的关键领域包括对18个公共医学视觉语言数据集的探索、对16个近期值得关注的医学VLM的架构和预训练策略的深入分析,以及对评估VLM在医学报告生成和VQA中性能的评估指标的全面讨论。我们还强调了医学VLM开发目前面临的挑战,包括数据可用性有限、对数据隐私的担忧以及缺乏适当的评估指标等,同时也提出了应对这些障碍的未来方向。总的来说,我们的综述总结了开发VLM以利用多模态医学数据改善医疗保健应用的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7859/11611889/776b0621ae76/frai-07-1430984-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验