Suppr超能文献

基于结构和机制的硫酸转移酶CHST15工程改造用于高效合成硫酸软骨素E

Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E.

作者信息

Wang Zhonghua, Song Wei, Wei Wanqing, Qi Hejia, Meng Weiwei, Liu Jia, Li Xiaomin, Gao Cong, Liu Liming, Hu Guipeng, Zhou Yiwen, Wu Jing

机构信息

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.

School of Biotechnology, Jiangnan University School of Biotechnology, Wuxi, China.

出版信息

Appl Environ Microbiol. 2025 Jan 31;91(1):e0157324. doi: 10.1128/aem.01573-24. Epub 2024 Dec 4.

Abstract

Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and efficient method for synthesizing chondroitin sulfate E (CSE) via enzymatic synthesis, identifying CHST15, a sulfotransferase that catalyzes the conversion of chondroitin sulfate A (CSA) to CSE. We investigated the novel catalytic mechanism of CHST15 through quantum mechanical (QM) calculations and experimental validation, confirming its alignment with the SN2 reaction mechanism. Subsequently, we enhanced the catalytic efficiency of CHST15 using protein engineering, improving the catalytic efficiency from 18.1% in the wild type (WT) to 62.5% in the M7 mutant-a 3.5-fold increase. Finally, we constructed a six-enzyme cascade whole-cell catalyst, achieving a 72.2% conversion of 15 g/L CSA to produce CSE within 24 h. These findings offer a promising strategy for the industrial production of CSE.IMPORTANCECurrent methods for obtaining chondroitin sulfate (CS) primarily rely on tissue extraction and chemical synthesis. However, these approaches are hindered by contamination risks from animal-derived heteropolysaccharides and the technical challenges inherent in complex chemical synthesis, limiting the scalability of industrial CS production. To address this, we developed a green and efficient enzymatic biosynthesis method for chondroitin sulfate E (CSE). By identifying and engineering the sulfotransferase CHST15 from , we created a mutant (CHST15) with a 3.5-fold increase in catalytic efficiency toward chondroitin sulfate A (CSA) compared to the wild-type enzyme. Additionally, we constructed a six-enzyme cascade whole-cell biocatalyst, achieving a 72.2% conversion rate from CSA to CSE. This study opens new avenues for the industrial-scale production of CSE through sustainable enzymatic processes.

摘要

从动物软骨中提取的天然硫酸软骨素(CS)广泛应用于制药和食品行业。然而,动物源杂多糖的污染带来了重大挑战,包括潜在的免疫反应。为了解决这一问题,我们开发了一种通过酶促合成硫酸软骨素E(CSE)的绿色高效方法,鉴定出一种硫酸转移酶CHST15,它催化硫酸软骨素A(CSA)转化为CSE。我们通过量子力学(QM)计算和实验验证研究了CHST15的新型催化机制,证实其符合SN2反应机制。随后,我们利用蛋白质工程提高了CHST15的催化效率,将催化效率从野生型(WT)的18.1%提高到M7突变体的62.5%,提高了3.5倍。最后,我们构建了一种六酶级联全细胞催化剂,在24小时内实现了15 g/L CSA向CSE的72.2%转化率。这些发现为CSE的工业化生产提供了一个有前景的策略。

重要性

目前获得硫酸软骨素(CS)的方法主要依赖于组织提取和化学合成。然而,这些方法受到动物源杂多糖污染风险以及复杂化学合成中固有技术挑战的阻碍,限制了工业CS生产的可扩展性。为了解决这一问题,我们开发了一种用于硫酸软骨素E(CSE)的绿色高效酶促生物合成方法。通过鉴定和改造来自[具体来源未给出]的硫酸转移酶CHST15,我们创建了一个突变体(CHST15),与野生型酶相比,其对硫酸软骨素A(CSA)的催化效率提高了3.5倍。此外,我们构建了一种六酶级联全细胞生物催化剂,实现了从CSA到CSE的72.2%转化率。本研究为通过可持续酶促过程进行CSE的工业规模生产开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6a/11784081/693b07b2b699/aem.01573-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验