Plumeré Nicolas, Johnson Ben A
Technical University of Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, Straubing 94315, Germany.
J Am Chem Soc. 2024 Dec 18;146(50):34771-34785. doi: 10.1021/jacs.4c13271. Epub 2024 Dec 4.
Electrochemical systems with increasing complexity are gaining importance in catalytic energy conversion applications. Due to the interplay between transport phenomena and chemical kinetics, predicting optimization is a challenge, with numerous parameters controlling the overall performance. Zone diagrams provide a way to identify specific kinetic regimes and track how variations in the governing parameters translate the system between either adverse or optimal kinetic states. However, the current procedures for constructing zone diagrams are restricted to simplified systems with a minimal number of governing parameters. We present a computationally based method that maps the entire parameter space of multidimensional electrochemical systems and automatically identifies kinetic regimes. Once the current output over a discrete set of parameters is interpreted as a geometric surface, its geometry encodes all of the information needed to construct a zone diagram. Zone boundaries and limiting zones are defined by curved and flat regions, respectively. This geometric framework enables a systematic exploration of the parameter space, which is not readily accessible by analytical or direct numerical methods. This will become increasingly valuable for the rational design of electrochemical systems with intrinsically high complexity.
在催化能量转换应用中,日益复杂的电化学系统正变得越来越重要。由于传输现象和化学动力学之间的相互作用,预测优化是一项挑战,有众多参数控制着整体性能。区域图提供了一种识别特定动力学区域并追踪控制参数的变化如何使系统在不利或最佳动力学状态之间转换的方法。然而,目前构建区域图的程序仅限于具有最少控制参数的简化系统。我们提出了一种基于计算的方法,该方法可绘制多维电化学系统的整个参数空间,并自动识别动力学区域。一旦将离散参数集上的电流输出解释为几何表面,其几何形状就会编码构建区域图所需的所有信息。区域边界和限制区域分别由弯曲和平坦区域定义。这种几何框架能够对参数空间进行系统探索,而这是解析或直接数值方法难以实现的。这对于本质上高度复杂的电化学系统的合理设计将变得越来越有价值。