Hoar Benjamin B, Zhang Weitong, Xu Shuangning, Deeba Rana, Costentin Cyrille, Gu Quanquan, Liu Chong
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.
Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, United States.
ACS Meas Sci Au. 2022 Dec 21;2(6):595-604. doi: 10.1021/acsmeasuresciau.2c00045. Epub 2022 Aug 31.
For decades, employing cyclic voltammetry for mechanistic investigation has demanded manual inspection of voltammograms. Here, we report a deep-learning-based algorithm that automatically analyzes cyclic voltammograms and designates a probable electrochemical mechanism among five of the most common ones in homogeneous molecular electrochemistry. The reported algorithm will aid researchers' mechanistic analyses, utilize otherwise elusive features in voltammograms, and experimentally observe the gradual mechanism transitions encountered in electrochemistry. An automated voltammogram analysis will aid the analysis of complex electrochemical systems and promise autonomous high-throughput research in electrochemistry with minimal human interference.
几十年来,采用循环伏安法进行机理研究一直需要人工检查伏安图。在此,我们报告一种基于深度学习的算法,该算法可自动分析循环伏安图,并在均相分子电化学中最常见的五种机理中指定一种可能的电化学机理。所报告的算法将有助于研究人员的机理分析,利用伏安图中难以捉摸的特征,并通过实验观察电化学中遇到的逐步机理转变。自动伏安图分析将有助于复杂电化学系统的分析,并有望在最小限度的人为干扰下实现电化学的自主高通量研究。