Suppr超能文献

人类连接组计划的发展:一种基于深度学习的快速新生儿皮质表面重建流程。

The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction.

作者信息

Ma Qiang, Liang Kaili, Li Liu, Masui Saga, Guo Yourong, Nosarti Chiara, Robinson Emma C, Kainz Bernhard, Rueckert Daniel

机构信息

Department of Computing, Imperial College London, UK.

School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.

出版信息

Med Image Anal. 2025 Feb;100:103394. doi: 10.1016/j.media.2024.103394. Epub 2024 Nov 26.

Abstract

The Developing Human Connectome Project (dHCP) aims to explore developmental patterns of the human brain during the perinatal period. An automated processing pipeline has been developed to extract high-quality cortical surfaces from structural brain magnetic resonance (MR) images for the dHCP neonatal dataset. However, the current implementation of the pipeline requires more than 6.5 h to process a single MRI scan, making it expensive for large-scale neuroimaging studies. In this paper, we propose a fast deep learning (DL) based pipeline for dHCP neonatal cortical surface reconstruction, incorporating DL-based brain extraction, cortical surface reconstruction and spherical projection, as well as GPU-accelerated cortical surface inflation and cortical feature estimation. We introduce a multiscale deformation network to learn diffeomorphic cortical surface reconstruction end-to-end from T2-weighted brain MRI. A fast unsupervised spherical mapping approach is integrated to minimize metric distortions between cortical surfaces and projected spheres. The entire workflow of our DL-based dHCP pipeline completes within only 24 s on a modern GPU, which is nearly 1000 times faster than the original dHCP pipeline. The qualitative assessment demonstrates that for 82.5% of the test samples, the cortical surfaces reconstructed by our DL-based pipeline achieve superior (54.2%) or equal (28.3%) surface quality compared to the original dHCP pipeline.

摘要

人类连接组发育项目(dHCP)旨在探索围产期人类大脑的发育模式。已开发出一种自动化处理流程,用于从dHCP新生儿数据集中的结构性脑磁共振(MR)图像中提取高质量的皮质表面。然而,该流程目前的实现方式处理单次MRI扫描需要超过6.5小时,这使得大规模神经影像学研究成本高昂。在本文中,我们提出了一种基于深度学习(DL)的快速流程,用于dHCP新生儿皮质表面重建,该流程结合了基于DL的脑提取、皮质表面重建和球面投影,以及GPU加速的皮质表面膨胀和皮质特征估计。我们引入了一个多尺度变形网络,以从T2加权脑MRI中端到端地学习微分同胚皮质表面重建。集成了一种快速无监督球面映射方法,以最小化皮质表面与投影球体之间的度量失真。我们基于DL的dHCP流程的整个工作流程在现代GPU上仅需24秒即可完成,比原始dHCP流程快近1000倍。定性评估表明,对于82.5%的测试样本,我们基于DL的流程重建的皮质表面与原始dHCP流程相比,表面质量达到了更高水平(54.2%)或同等水平(28.3%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验