Suppr超能文献

心血管心电图评估中的通用表示:一种自监督学习方法。

Universal representations in cardiovascular ECG assessment: A self-supervised learning approach.

作者信息

Liu Zhi-Yong, Lin Ching-Heng, Hsu Yu-Chun, Chen Jung-Sheng, Chang Po-Cheng, Wen Ming-Shien, Kuo Chang-Fu

机构信息

Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.

出版信息

Int J Med Inform. 2025 Mar;195:105742. doi: 10.1016/j.ijmedinf.2024.105742. Epub 2024 Dec 1.

Abstract

BACKGROUND

The 12-lead electrocardiogram (ECG) is an established modality for cardiovascular assessment. While deep learning algorithms have shown promising results for analyzing ECG data, the limited availability of labeled datasets hinders broader applications. Self-supervised learning can learn meaningful representations from the unlabeled data and transfer the knowledge to downstream tasks. This study underscores the development and validation of a self-supervised learning methodology tailored to produce universal ECG representations from longitudinally collected ECG data, applicable across a spectrum of cardiovascular assessments.

METHODS

We introduced a pre-trained model that utilizes contrastive self-supervised learning to universal ECG representations from 4,932,573 ECG tracing from 1,684,298 adult patients on 7 campuses of Chang Gung Memorial Hospital. We extensively evaluated the proposed model using an internal dataset collected from diverse healthcare establishments and an external public dataset encompassing varied cardiovascular conditions and sample magnitudes.

RESULTS

The pre-trained model showed the equivalent performance to the conventionally trained models, which solely rely on supervised learning in both internal and external datasets, to assess atrial fibrillation, atrial flutter, premature rhythm abnormalities, first-degree atrioventricular block, and myocardial infarction. When applied to small sample sizes, it was observed that the learned ECG representations enhanced the classification models, resulting in an improvement of up to 0.3 of the area under the receiver operating characteristic (AUROC).

CONCLUSIONS

The ECG representations learned from longitudinal ECG data are highly effective, particularly with small sample sizes, and further enhance the learning process and boost robustness.

摘要

背景

12导联心电图(ECG)是一种既定的心血管评估方式。虽然深度学习算法在分析心电图数据方面已显示出有前景的结果,但标记数据集的有限可用性阻碍了更广泛的应用。自监督学习可以从未标记数据中学习有意义的表示,并将知识转移到下游任务。本研究强调了一种自监督学习方法的开发和验证,该方法旨在从纵向收集的心电图数据中生成通用的心电图表示,适用于一系列心血管评估。

方法

我们引入了一个预训练模型,该模型利用对比自监督学习从长庚纪念医院7个院区的1,684,298名成年患者的4,932,573份心电图描记中生成通用的心电图表示。我们使用从不同医疗机构收集的内部数据集和包含各种心血管疾病及样本量的外部公共数据集,对所提出的模型进行了广泛评估。

结果

预训练模型在内部和外部数据集中评估心房颤动、心房扑动、过早节律异常、一度房室传导阻滞和心肌梗死时,表现出与仅依赖监督学习的传统训练模型相当的性能。当应用于小样本量时,观察到学习到的心电图表示增强了分类模型,导致受试者操作特征曲线下面积(AUROC)提高了0.3。

结论

从纵向心电图数据中学习到的心电图表示非常有效,尤其是在小样本量情况下,并且进一步增强了学习过程并提高了稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验