IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):13845-13859. doi: 10.1109/TNNLS.2023.3272153. Epub 2024 Oct 7.
Extracting invariant representations in unlabeled electrocardiogram (ECG) signals is a challenge for deep neural networks (DNNs). Contrastive learning is a promising method for unsupervised learning. However, it should improve its robustness to noise and learn the spatiotemporal and semantic representations of categories, just like cardiologists. This article proposes a patient-level adversarial spatiotemporal contrastive learning (ASTCL) framework, which includes ECG augmentations, an adversarial module, and a spatiotemporal contrastive module. Based on the ECG noise attributes, two distinct but effective ECG augmentations, ECG noise enhancement, and ECG noise denoising, are introduced. These methods are beneficial for ASTCL to enhance the robustness of the DNN to noise. This article proposes a self-supervised task to increase the antiperturbation ability. This task is represented as a game between the discriminator and encoder in the adversarial module, which pulls the extracted representations into the shared distribution between the positive pairs to discard the perturbation representations and learn the invariant representations. The spatiotemporal contrastive module combines spatiotemporal prediction and patient discrimination to learn the spatiotemporal and semantic representations of categories. To learn category representations effectively, this article only uses patient-level positive pairs and alternately uses the predictor and the stop-gradient to avoid model collapse. To verify the effectiveness of the proposed method, various groups of experiments are conducted on four ECG benchmark datasets and one clinical dataset compared with the state-of-the-art methods. Experimental results showed that the proposed method outperforms the state-of-the-art methods.
从无标签心电图 (ECG) 信号中提取不变表示对于深度神经网络 (DNN) 来说是一个挑战。对比学习是一种很有前途的无监督学习方法。然而,它应该提高对噪声的鲁棒性,并像心脏病专家一样学习类别时空和语义表示。本文提出了一种基于患者级别的对抗时空对比学习 (ASTCL) 框架,该框架包括 ECG 增强、对抗模块和时空对比模块。基于 ECG 噪声属性,引入了两种不同但有效的 ECG 增强方法,即 ECG 噪声增强和 ECG 噪声去噪。这些方法有利于 ASTCL 提高 DNN 对噪声的鲁棒性。本文提出了一种自监督任务,以增强抗扰能力。该任务表示为对抗模块中鉴别器和编码器之间的博弈,将提取的表示拉到正样本之间的共享分布中,以丢弃扰动表示并学习不变表示。时空对比模块结合时空预测和患者鉴别,学习类别时空和语义表示。为了有效地学习类别表示,本文仅使用患者级别的正样本,并交替使用预测器和停止梯度来避免模型崩溃。为了验证所提出方法的有效性,在四个 ECG 基准数据集和一个临床数据集上与最先进的方法进行了各种组实验。实验结果表明,所提出的方法优于最先进的方法。