Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.
PLoS One. 2024 Aug 14;19(8):e0307978. doi: 10.1371/journal.pone.0307978. eCollection 2024.
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.
深度神经网络算法在更广泛人群中的推广是医学领域的一个重要挑战。我们旨在应用自监督学习,使用掩蔽自动编码器(MAE),利用有限的心电图数据来提高 12 导联心电图(ECG)分析模型的性能。我们通过使用 MAE 重建掩蔽的 ECG 数据来预训练 Vision Transformer(ViT)模型。我们在来自东京大学医院(UTokyo)的 ECG-超声心动图数据上对基于 MAE 的 ECG 预训练模型进行微调,用于检测左心室收缩功能障碍(LVSD),然后使用来自七个机构的多中心外部验证数据进行评估,使用接收者操作特征曲线下的面积(AUROC)进行评估。我们纳入了来自 UTokyo 的 38245 对 ECG-超声心动图和来自所有机构的 229439 对。使用 UTokyo 的 ECG 数据进行预训练的基于 MAE 的 ECG 模型的性能在所有外部验证队列中均明显高于其他深度神经网络模型(LVSD 的 AUROC,0.913-0.962,p<0.001)。此外,我们还发现基于 MAE 的 ECG 分析模型的性能取决于模型容量和训练数据量。此外,基于 MAE 的 ECG 分析模型即使在 ECG 基准数据集(PTB-XL)上也能保持高性能。我们提出的方法使用有限的 ECG 数据开发了高性能的基于 MAE 的 ECG 分析模型。