Suppr超能文献

生成式人工智能简介:展望未来

Introduction to Generative Artificial Intelligence: Contextualizing the Future.

作者信息

Singh Rajendra, Kim Ji Yeon, Glassy Eric F, Dash Rajesh C, Brodsky Victor, Seheult Jansen, de Baca M E, Gu Qiangqiang, Hoekstra Shannon, Pritt Bobbi S

机构信息

From the Department of Pathology, Summit Health, Woodland Park, New Jersey (Singh).

the Department of Pathology, Kaiser Permanente, Los Angeles, California (Kim).

出版信息

Arch Pathol Lab Med. 2025 Feb 1;149(2):112-122. doi: 10.5858/arpa.2024-0221-RA.

Abstract

CONTEXT.—: Generative artificial intelligence (GAI) is a promising new technology with the potential to transform communication and workflows in health care and pathology. Although new technologies offer advantages, they also come with risks that users, particularly early adopters, must recognize. Given the fast pace of GAI developments, pathologists may find it challenging to stay current with the terminology, technical underpinnings, and latest advancements. Building this knowledge base will enable pathologists to grasp the potential risks and impacts that GAI may have on the future practice of pathology.

OBJECTIVE.—: To present key elements of GAI development, evaluation, and implementation in a way that is accessible to pathologists and relevant to laboratory applications.

DATA SOURCES.—: Information was gathered from recent studies and reviews from PubMed and arXiv.

CONCLUSIONS.—: GAI offers many potential benefits for practicing pathologists. However, the use of GAI in clinical practice requires rigorous oversight and continuous refinement to fully realize its potential and mitigate inherent risks. The performance of GAI is highly dependent on the quality and diversity of the training and fine-tuning data, which can also propagate biases if not carefully managed. Ethical concerns, particularly regarding patient privacy and autonomy, must be addressed to ensure responsible use. By harnessing these emergent technologies, pathologists will be well placed to continue forward as leaders in diagnostic medicine.

摘要

背景

生成式人工智能(GAI)是一项有前景的新技术,有潜力改变医疗保健和病理学中的沟通及工作流程。尽管新技术带来优势,但也伴随着风险,用户尤其是早期采用者必须认识到这些风险。鉴于GAI发展迅速,病理学家可能会发现跟上术语、技术基础和最新进展具有挑战性。建立这一知识库将使病理学家能够理解GAI可能对未来病理学实践产生的潜在风险和影响。

目的

以病理学家易于理解且与实验室应用相关的方式,介绍GAI开发、评估和实施的关键要素。

数据来源

信息来自PubMed和arXiv的近期研究及综述。

结论

GAI为执业病理学家提供了许多潜在益处。然而,在临床实践中使用GAI需要严格监督和持续完善,以充分实现其潜力并降低固有风险。GAI的性能高度依赖于训练和微调数据的质量及多样性,如果管理不善,这些数据也可能传播偏差。必须解决伦理问题,特别是关于患者隐私和自主权的问题,以确保负责任地使用。通过利用这些新兴技术,病理学家将有能力继续作为诊断医学的领导者向前发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验