Suppr超能文献

[靶向滋养层细胞表面抗原-2的抗体药物偶联物在晚期非小细胞肺癌中的研究进展与展望]

[Research Progress and Perspectives of Antibody-drug Conjugates Targeting
Trophoblast Cell Surface Antigen-2 in Advanced Non-small Cell Lung Cancer].

作者信息

Xu Jingyan, Liu Jiaqi, Mei Shiqi, Zhou Qing

机构信息

Guangdong Provincial Institute of Lung Cancer, Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.

出版信息

Zhongguo Fei Ai Za Zhi. 2024 Oct 20;27(10):763-776. doi: 10.3779/j.issn.1009-3419.2024.101.25.

Abstract

Non-small cell lung cancer (NSCLC) remains a significant global health burden, and there is an urgent need for new treatment options. Trophoblast cell surface antigen-2 (TROP-2), a target closely associated with NSCLC prognosis, has become a research hotspot in recent years. Notably, TROP-2-targeted antibody-drug conjugates (ADCs) have made groundbreaking advances in NSCLC therapy. Clinical studies have demonstrated that certain TROP-2 ADCs can significantly improve progression-free survival in previously treated patients with advanced or metastatic NSCLC, regardless of the presence of actionable genomic alterations. These agents have shown promising potential in both frontline and subsequent treatment settings. In terms of safety, while adverse effects affecting the hematologic, respiratory, and gastrointestinal systems are generally manageable, close clinical monitoring and timely management are still required. In conclusion, TROP-2 ADCs hold great promise in the treatment of NSCLC.
.

摘要

非小细胞肺癌(NSCLC)仍然是一项重大的全球健康负担,迫切需要新的治疗选择。滋养层细胞表面抗原2(TROP-2)是一种与NSCLC预后密切相关的靶点,近年来已成为研究热点。值得注意的是,靶向TROP-2的抗体药物偶联物(ADC)在NSCLC治疗方面取得了突破性进展。临床研究表明,某些TROP-2 ADC可显著改善既往接受过治疗的晚期或转移性NSCLC患者的无进展生存期,无论是否存在可操作的基因组改变。这些药物在一线和后续治疗中均显示出有前景的潜力。在安全性方面,虽然影响血液、呼吸和胃肠道系统的不良反应通常可控,但仍需要密切的临床监测和及时处理。总之,TROP-2 ADC在NSCLC治疗中具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6204/11629093/6332ec74c779/zgfazz-27-10-763-img_1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验