Skorotetcky Maxim S, Mir Wasim J, Sheikh Tariq, Yorov Khursand E, Saidzhonov Bedil M, Daws Sawsan, Zhou Renqian, Hedhili Mohamed N, Abulikemu Mutalifu, Mohammed Omar F, Bakr Osman M
Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Adv Mater. 2025 Jan;37(4):e2412105. doi: 10.1002/adma.202412105. Epub 2024 Dec 4.
InAs colloidal quantum dots (CQDs) are a promising heavy-metal-free material for infrared optoelectronic devices. However, their synthesis is limited by their reagents: the acutely toxic and difficult to source tris(trimethylsilyl)arsine ((TMS)As), as well as the strong reducing agents (e.g., Super Hydride). A reducing agent is introduced based on hydrosilanes (Si-H) to address both challenges. A synthesis strategy with this agent is demonstrated, resulting in monodisperse InAs CQDs with a tunable first excitonic peak between 520 and 900 nm by hot injection, and between 900 and 1550 nm by continuous injection. Furthermore, by avoiding the use of carboxyl group-containing compounds, such as oleic acid or indium acetate, the synthesis minimizes surface oxidation during InAs CQDs formation. The synthesized InAs CQDs are of high optoelectronic quality, with a lower concentration of deep trap states, as evident by the remarkable characteristics of photodetectors fabricated from these CQDs: low dark current (≈150 nA cm), external quantum efficiency (32% at 900 nm), and a fast photoresponse time (≈4.4 µs). The elimination of (TMS)As in the synthesis overcomes a key practical barrier for exploiting and exploring the properties of large InAs CQDs in optoelectronic applications.
砷化铟胶体量子点(CQDs)是一种用于红外光电器件的很有前景的无重金属材料。然而,它们的合成受到试剂的限制:剧毒且难以获取的三(三甲基硅基)砷((TMS)As)以及强还原剂(如超级氢化物)。引入了一种基于硅烷(Si-H)的还原剂来应对这两个挑战。展示了一种使用这种试剂的合成策略,通过热注入得到了具有520至900纳米之间可调谐的第一激子峰的单分散砷化铟CQDs,通过连续注入则得到了900至1550纳米之间可调谐的第一激子峰。此外,通过避免使用含羧基的化合物,如油酸或醋酸铟,该合成方法在砷化铟CQDs形成过程中使表面氧化最小化。合成的砷化铟CQDs具有高的光电质量以及较低浓度的深陷阱态,由用这些CQDs制造的光电探测器的显著特性可以看出:低暗电流(≈150 nA cm)、外部量子效率(在900纳米处为32%)以及快速的光响应时间(≈4.4微秒)。合成过程中消除(TMS)As克服了在光电子应用中开发和探索大型砷化铟CQDs特性的一个关键实际障碍。