Luo Chaojie, Cao Guohua, Wang Beilin, Jiang Lili, Zhao Hengyi, Li Tongrui, Tai Xiaolin, Lin Zhiyong, Lin Yue, Sun Zhe, Cui Ping, Zhang Hui, Zhang Zhenyu, Zeng Changgan
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23026, China.
CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Nat Commun. 2024 Dec 4;15(1):10584. doi: 10.1038/s41467-024-54948-x.
Heterostructures and superlattices composed of layered transition metal dichalcogenides (TMDs), celebrated for their superior emergent properties over individual components, offer significant promise for the development of multifunctional electronic devices. However, conventional fabrication techniques for these structures depend on layer-by-layer artificial construction and are hindered by their complexity and inefficiency. Herein, we introduce a universal strategy for the automated synthesis of TMD superlattice single crystals through self-assembly, exemplified by the NbSeTe 1T/1H superlattice. The core principle of this strategy is to balance the formation energies of T (octahedral) and H (trigonal prismatic) phases. By adjusting the Te to Se stoichiometric ratio in NbSeTe, we reduce the formation energy disparity between the T and H phases, enabling the self-assembly of 1T and 1H layers into a 1T/1H superlattice. The resulting 1T/1H superlattices retain electronic characteristics of both 1T and 1H layers. We further validate the universality of this strategy by achieving 1T/1H superlattices through substituting Nb atoms in NbSe with V or Ti atoms. This self-assembly for superlattice crystal synthesis approach could extend to other layered materials, opening new avenues for efficient fabrication and broad applications of superlattices.
由层状过渡金属二硫属化物(TMDs)组成的异质结构和超晶格,因其相对于单个组分具有优异的新兴特性而备受瞩目,为多功能电子器件的发展提供了巨大的潜力。然而,这些结构的传统制造技术依赖于逐层人工构建,并且受到其复杂性和低效率的阻碍。在此,我们介绍一种通过自组装自动合成TMD超晶格单晶的通用策略,以NbSeTe 1T/1H超晶格为例。该策略的核心原理是平衡T(八面体)相和H(三角棱柱)相的形成能。通过调整NbSeTe中Te与Se的化学计量比,我们减小了T相和H相之间的形成能差异,使得1T和1H层能够自组装成1T/1H超晶格。所得的1T/1H超晶格保留了1T层和1H层的电子特性。我们通过用V或Ti原子替代NbSe中的Nb原子来制备1T/1H超晶格,进一步验证了该策略的通用性。这种用于超晶格晶体合成的自组装方法可以扩展到其他层状材料,为超晶格的高效制造和广泛应用开辟新途径。