Huang Jiaming, Fu Jiehao, Yuan Bo, Xia Hao, Chen Tianxiang, Lang Yongwen, Liu Heng, Ren Zhiwei, Liang Qiong, Liu Kuan, Guan Zhiqiang, Zou Guangruixing, Chandran Hrisheekesh Thachoth, Lo Tsz Woon Benedict, Lu Xinhui, Lee Chun-Sing, Yip Hin-Lap, Peng Yung-Kang, Li Gang
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Department of Chemistry, City University of Hong Kong, Hong Kong, China.
Nat Commun. 2024 Dec 4;15(1):10565. doi: 10.1038/s41467-024-54923-6.
Advances in improving the operational lifetime of highly efficient organic photovoltaic (OPV) and understanding photo-degradation mechanisms in molecular level are currently limited, especially on the promising inverted OPV, posing critical challenges to commercialization. Here, we demonstrate a radical scavenger (3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionic acid) capped ZnO (BHT@ZnO) nanoparticles as the electron transport layer providing effective surface oxygen vacancy passivation and reactive radical capture capability. Encouragingly, this BHT@ZnO-based empowered device achieves a record inverted OPV efficiency of 19.47% (Certificated efficiency: 18.97%). The devices demonstrate light soaking-free behavior, long-term stability under ISOS-D-1 (94.2% PCE retention after 8904 h in ambient) and ISOS-L-1 testing protocol (81.5% PCE retention after 7724 h in MPP). More importantly, we elucidate detailed degradation mechanism in OPV involving selectively catalytic degradation of donor and acceptor by superoxide and hydroxyl radicals, respectively, as well as the degradation pathway of polymer donor upon radiation exposure. Performance enhancement and mechanism comprehension provide strong support for the development of OPV technology.
目前,在提高高效有机光伏(OPV)器件的使用寿命以及在分子水平上理解光降解机制方面进展有限,特别是对于有前景的倒置OPV而言,这对其商业化构成了严峻挑战。在此,我们展示了一种用自由基清除剂(3-(3,5-二叔丁基-4-羟基苯基)丙酸)包覆的ZnO(BHT@ZnO)纳米颗粒作为电子传输层,其具有有效的表面氧空位钝化和活性自由基捕获能力。令人鼓舞的是,这种基于BHT@ZnO的增强型器件实现了创纪录的19.47%的倒置OPV效率(认证效率:18.97%)。这些器件表现出无光照浸泡行为,在ISOS-D-1(在环境中8904小时后PCE保留率为94.2%)和ISOS-L-1测试协议(在最大功率点7724小时后PCE保留率为81.5%)下具有长期稳定性。更重要的是,我们阐明了OPV中详细的降解机制,包括超氧自由基和羟基自由基分别对供体和受体的选择性催化降解,以及聚合物供体在辐射暴露后的降解途径。性能的提高和机制的理解为OPV技术的发展提供了有力支持。