Newman Andrew J, Kalb Christina, Chakraborty T C, Fitch Amy, Darrow Lyndsey A, Warren Joshua L, Strickland Matthew J, Holmes Heather A, Monaghan Andrew J, Chang Howard H
NSF National Center for Atmospheric Research, Boulder, CO, USA.
Yale University, School of the Environment, New Haven, CT, USA.
Sci Data. 2024 Dec 4;11(1):1321. doi: 10.1038/s41597-024-04086-2.
Many current gridded surface meteorological datasets are inadequate for quantifying near-surface spatiotemporal variability because they do not fully represent the impacts of land surface heterogeneity. Of note, explicit representation of the spatial structure and magnitude of local urban warming are usually lacking. Here we enhance the representation of spatial meteorological variability over urban areas in the conterminous United States (CONUS) by employing the High-Resolution Land Data Assimilation System (HRLDAS), which accounts for the fine-scale impacts of spatiotemporally varying land surfaces on weather. We also synthesize in situ meteorological data including local mesonets to create a 1 km grid spacing model-observation fusion product spanning 1981-2018 over the CONUS at daily temporal resolution. Daily maximum, minimum, and mean values for a variety of temperature estimates, humidity, and surface energy budget terms, among others, are included. This High-resolution Urban Meteorology for Impacts Dataset (HUMID) will be useful for studies examining spatial variability of near surface meteorology and the impacts of urban heat islands across many disciplines including epidemiology, ecology, and climatology.
许多当前的网格化地面气象数据集在量化近地表时空变异性方面存在不足,因为它们没有充分体现陆地表面异质性的影响。值得注意的是,通常缺乏对局部城市变暖的空间结构和强度的明确表示。在这里,我们通过采用高分辨率陆地数据同化系统(HRLDAS)来增强美国本土(CONUS)城市地区空间气象变异性的表示,该系统考虑了时空变化的陆地表面对天气的精细尺度影响。我们还综合了包括当地自动气象站网在内的原位气象数据,以创建一个时间分辨率为每日、空间分辨率为1公里的1981 - 2018年美国本土模型 - 观测融合产品。其中包括各种温度估计值、湿度以及地表能量收支项等的日最高值、最低值和平均值。这个高分辨率城市气象影响数据集(HUMID)将有助于许多学科(包括流行病学、生态学和气候学)研究近地表气象的空间变异性以及城市热岛的影响。