Suppr超能文献

使用贝叶斯空间元回归方法识别热浪与早产之间关联的县级效应修饰因素。

Identifying county-level effect modifiers of the association between heat waves and preterm birth using a Bayesian spatial meta regression approach.

作者信息

Lin Shuqi, Chang Howard H, Darrow Lyndsey A, Strickland Matthew J, Fitch Amy, Newman Andrew, Zheng Xiaping, Warren Joshua L

机构信息

Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

medRxiv. 2025 Jul 8:2025.07.03.25330695. doi: 10.1101/2025.07.03.25330695.

Abstract

High temperature is associated with adverse health outcomes, particularly for vulnerable subpopulations including pregnant individuals and their unborn babies. Several recent studies have investigated the association between temperature and preterm birth at different geographic scales and across different spatial locations. However, there has been less focus on characterizing spatial heterogeneity in risks and identifying modifiable factors that contribute to the observed variation. In this work, we carry out a two-stage modeling approach to (i) estimate county-level short-term associations between heat waves and preterm birth across eight states in the United States and (ii) explore county-level factors that modify these associations using a newly developed hierarchical Bayesian spatial meta-regression approach. Specifically, we extend the traditional meta-regression framework to account for spatial correlation between counties within the same state by modeling the effect estimates using a variant of the conditional autoregressive model. We report several variables that modified the associations between heatwaves and preterm birth, including housing quality, energy affordability, and social vulnerability for minority status and language barriers. An R package, , is developed for analyses that aims to synthesize area-level risk estimates while accounting for spatial dependence.

摘要

高温与不良健康结果相关,尤其是对包括孕妇及其未出生婴儿在内的弱势群体。最近的几项研究在不同地理尺度和不同空间位置上调查了温度与早产之间的关联。然而,较少关注风险的空间异质性特征以及识别导致观察到的变异的可改变因素。在这项工作中,我们采用两阶段建模方法:(i)估计美国八个州热浪与早产之间的县级短期关联,以及(ii)使用新开发的分层贝叶斯空间元回归方法探索改变这些关联的县级因素。具体而言,我们扩展了传统的元回归框架,通过使用条件自回归模型的变体对效应估计进行建模,以考虑同一州内各县之间的空间相关性。我们报告了几个改变热浪与早产之间关联的变量,包括住房质量、能源可承受性以及少数族裔身份和语言障碍方面的社会脆弱性。我们开发了一个R包 用于分析,旨在综合区域层面的风险估计,同时考虑空间依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b3e/12265761/03eae77e78b6/nihpp-2025.07.03.25330695v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验