Suppr超能文献

基于优化双树复数小波变换并采用自适应加权平均融合策略的多模态图像融合

Optimized dual-tree complex wavelet transform aided multimodal image fusion with adaptive weighted average fusion strategy.

作者信息

Ravi Jampani, Narmadha R

机构信息

Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Semmancheri, Chennai, 600119, India.

出版信息

Sci Rep. 2024 Dec 4;14(1):30246. doi: 10.1038/s41598-024-81594-6.

Abstract

Image fusion is generally utilized for retrieving significant data from a set of input images to provide useful informative data. Image fusion enhances the applicability and quality of data. Hence, the analysis of multimodal image fusion is a new to the research topic, which is designed by combining the images of multimodal into single image in order to preserveexact details. On the other hand, the existing approaches face challenges in the precise interpretation of source images, and also it have only captured local information without considering the wide range of information. To consider these weaknesses, a multimodal image fusion model is planned to develop according to the multi-resolution transform along with the optimization strategy. At first, the images are effectively analyzed from standard public datasets and further, the images given into the Optimized Dual-Tree Complex Wavelet Transform (ODTCWT) to acquire low frequency and high frequency coefficients. Here, certain parameters in DTCWT get tuned with the hybridized heuristic strategy with the Probability of Fitness-based Honey Badger Squirrel Search Optimization (PF-HBSSO) to enhance the decomposition quality. Then, the fusion of high-frequency coefficients is performed using adaptive weighted average fusion technique, whereas the weights are optimized using PF-HBSSOto achieve the optimal fused results. Similarly, the low-frequency coefficients are combined by average fusion. Finally, the fused images undergo image reconstruction using the inverse ODTCWT. The experimental evaluation of the designed multimodal image fusion illustratessuperioritythat distinguishes this work from others.

摘要

图像融合通常用于从一组输入图像中检索重要数据,以提供有用的信息数据。图像融合提高了数据的适用性和质量。因此,多模态图像融合分析是一个新的研究课题,它通过将多模态图像组合成单幅图像来设计,以保留精确的细节。另一方面,现有方法在源图像的精确解释方面面临挑战,并且它们只捕捉了局部信息,而没有考虑广泛的信息。为了考虑这些弱点,计划根据多分辨率变换和优化策略开发一种多模态图像融合模型。首先,从标准公共数据集中有效地分析图像,然后,将图像输入到优化的双树复小波变换(ODTCWT)中以获取低频和高频系数。在这里,DTCWT中的某些参数通过基于适应度概率的蜜獾松鼠搜索优化(PF-HBSSO)的混合启发式策略进行调整,以提高分解质量。然后,使用自适应加权平均融合技术对高频系数进行融合,而权重则使用PF-HBSSO进行优化,以获得最佳融合结果。同样,低频系数通过平均融合进行组合。最后,使用逆ODTCWT对融合后的图像进行图像重建。所设计的多模态图像融合的实验评估显示出其优越性,这使这项工作与其他工作区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a528/11618366/ddb5ea1a3534/41598_2024_81594_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验