Suppr超能文献

基于主成分分析的抗运动结构光照明显微术。

Motion-resistant structured illumination microscopy based on principal component analysis.

作者信息

Lyu Jiaming, Qian Jiaming, Xu Kailong, Huang Yuxia, Zuo Chao

出版信息

Opt Lett. 2023 Jan 1;48(1):175-178. doi: 10.1364/OL.480330.

Abstract

Structured illumination microscopy (SIM) has become one of the most significant super-resolution techniques in bioscience for observing live-cell dynamics, thanks to fast full-field imaging and low photodamage. However, artifact-free SIM super-resolution reconstruction requires precise knowledge about variable environment-sensitive illumination parameters. Conventional algorithms typically, under the premise of known and reliable constant phase shifts, compensate for residual parameters, which will be easily broken by motion factors such as environment and medium perturbations, and sample offsets. In this Letter, we propose a robust motion-resistant SIM algorithm based on principal component analysis (mrPCA-SIM), which can efficiently compensate for nonuniform pixel shifts and phase errors in each raw illumination image. Experiments demonstrate that mrPCA-SIM achieves more robust imaging quality in complex, unstable conditions compared with conventional methods, promising a more compatible and flexible imaging tool for live cells.

摘要

结构光照显微镜(SIM)凭借快速全场成像和低光损伤,已成为生物科学中用于观察活细胞动态的最重要的超分辨率技术之一。然而,无伪影的SIM超分辨率重建需要精确了解可变的环境敏感照明参数。传统算法通常在已知且可靠的恒定相移前提下,补偿残余参数,而这些参数很容易因环境和介质扰动以及样品偏移等运动因素而被破坏。在本信函中,我们提出了一种基于主成分分析的稳健抗运动SIM算法(mrPCA-SIM),它可以有效补偿每个原始照明图像中的非均匀像素偏移和相位误差。实验表明,与传统方法相比,mrPCA-SIM在复杂、不稳定条件下能实现更稳健的成像质量,有望成为一种更兼容、灵活的活细胞成像工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验