Suppr超能文献

压力冲击下具有锥角的周期性结构的疏水性

Hydrophobicity of periodic structure with taper angle under pressure impact.

作者信息

Goto Ren, Oshima Yuki, Yamaguchi Masaki

机构信息

Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.

出版信息

Sci Rep. 2024 Dec 4;14(1):30228. doi: 10.1038/s41598-024-81778-0.

Abstract

Biomimetic periodic structures have garnered attention due to their excellent water repellency. The normal-taper angle, which is aspects of the cross-sectional structure, is important factor in achieving water repellency and pressure resistance; however, the underlying physical phenomenon has not been fully explained. Moreover, once a surface becomes hydrophobic, it is difficult to measure the apparent contact angle. The purpose of this paper is to clarify the taper angle that provides high water repellency under pressure impact conditions by formulating the relationship between the taper angle and the height of a droplet bouncing, instead of traditional contact angles, using experimental results. We fabricated multiple samples with different taper angles and groove width/tooth width ratios, through micro-processing using a femtosecond-pulsed laser and a control algorithm, and investigated their effects on water repellency. By using height of a droplet bouncing as an evaluation parameter, we were able to effectively differentiate between taper angles in terms of water repellency. Additionally, we suggested that in the bouncing phenomenon, where droplets are given velocity by falling, the sidewall of the periodic structure and the taper angle affect liquid repellency. To explain this phenomenon, we proposed a pressured-taper angle model where a droplet is pressed against the taper angle. Based on both experimental findings and the pressured-taper angle model, a relationship between the equilibrium contact angle, the taper angle, and the lifting force angle was revealed. Moreover, using this pressured-taper angle model, the taper angle of the periodic structure to achieve maximum liquid repellency was estimated from the equilibrium contact angle of the base material.

摘要

仿生周期性结构因其出色的疏水性而备受关注。作为横截面结构的一个方面,正锥角是实现疏水性和耐压性的重要因素;然而,其潜在的物理现象尚未得到充分解释。此外,一旦表面变得疏水,就很难测量表观接触角。本文的目的是通过利用实验结果,建立锥角与液滴弹跳高度之间的关系,而不是传统的接触角,来阐明在压力冲击条件下提供高疏水性的锥角。我们通过飞秒脉冲激光微加工和控制算法制造了多个具有不同锥角和槽宽/齿宽比的样品,并研究了它们对疏水性的影响。通过将液滴弹跳高度作为评估参数,我们能够有效地根据疏水性区分锥角。此外,我们认为在液滴因下落而获得速度的弹跳现象中,周期性结构的侧壁和锥角会影响液体排斥性。为了解释这一现象,我们提出了一个压力锥角模型,其中液滴被压在锥角上。基于实验结果和压力锥角模型,揭示了平衡接触角、锥角和升力角之间的关系。此外,利用这个压力锥角模型,根据基材的平衡接触角估计了实现最大液体排斥性的周期性结构的锥角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5706/11618410/5b9033f746fe/41598_2024_81778_Fig1_HTML.jpg

相似文献

1
Hydrophobicity of periodic structure with taper angle under pressure impact.
Sci Rep. 2024 Dec 4;14(1):30228. doi: 10.1038/s41598-024-81778-0.
2
Microgrooves with Small Taper Angle Processed by Nanosecond Laser in Closed Flowing Water.
Micromachines (Basel). 2024 Mar 27;15(4):448. doi: 10.3390/mi15040448.
3
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
4
Surface-deformability dependent contact time of bouncing droplets on sessile soap bubbles.
J Colloid Interface Sci. 2025 Feb 15;680(Pt A):326-333. doi: 10.1016/j.jcis.2024.10.185. Epub 2024 Oct 31.
5
Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
Langmuir. 2009 Aug 18;25(16):9208-18. doi: 10.1021/la900761u.
6
Robust Rain-Repellency and Droplet Bouncing Properties of Fresh and Aged Leaves Up to 6 Months.
ACS Omega. 2024 Jun 19;9(26):28323-28338. doi: 10.1021/acsomega.4c01623. eCollection 2024 Jul 2.
7
Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20972-8. doi: 10.1021/acsami.5b06754. Epub 2015 Sep 14.
8
Design of surface hierarchy for extreme hydrophobicity.
Langmuir. 2009 Jun 2;25(11):6129-36. doi: 10.1021/la803249t.
9
Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
Langmuir. 2023 Mar 21;39(11):3979-3993. doi: 10.1021/acs.langmuir.2c03298. Epub 2023 Mar 10.

本文引用的文献

1
Liquid-Repellent Surfaces.
Langmuir. 2022 Aug 2;38(30):9073-9084. doi: 10.1021/acs.langmuir.2c01533. Epub 2022 Jul 20.
2
A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids.
RSC Adv. 2019 Feb 26;9(12):6650-6657. doi: 10.1039/c8ra08328b. eCollection 2019 Feb 22.
4
Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation.
Nano Lett. 2021 Nov 10;21(21):9301-9309. doi: 10.1021/acs.nanolett.1c03506. Epub 2021 Oct 28.
6
Microfabrication of re-entrant surface with hydrophobicity/oleophobicity for liquid foods.
Sci Rep. 2020 Feb 10;10(1):2250. doi: 10.1038/s41598-020-59149-2.
7
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
8
Selective Liquid Sliding Surfaces with Springtail-Inspired Concave Mushroom-Like Micropillar Arrays.
Small. 2020 Jan;16(3):e1904612. doi: 10.1002/smll.201904612. Epub 2019 Dec 12.
9
Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
Langmuir. 2019 Dec 24;35(51):16693-16711. doi: 10.1021/acs.langmuir.9b02986. Epub 2019 Dec 12.
10
Multifaceted design optimization for superomniphobic surfaces.
Sci Adv. 2019 Jun 21;5(6):eaav7328. doi: 10.1126/sciadv.aav7328. eCollection 2019 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验