Suppr超能文献

新鲜和长达6个月的老化叶片的强大防雨性和水滴弹跳特性

Robust Rain-Repellency and Droplet Bouncing Properties of Fresh and Aged Leaves Up to 6 Months.

作者信息

Choubey Rakesh, Rowthu Sriharitha

机构信息

Materials Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar 382055, Gujarat, India.

出版信息

ACS Omega. 2024 Jun 19;9(26):28323-28338. doi: 10.1021/acsomega.4c01623. eCollection 2024 Jul 2.

Abstract

Robust rain-repellent surfaces are useful in roofs, solar panels, windshields, etc. Herein, excellent rain-repellency and droplet bouncing properties of leaves are presented. They possess surface microbumps ( ∼ 13 μm, ∼ 8 μm, ∼ 3 μm), which in turn comprise nanoplatelets ( ∼ 741 nm, ∼ 59 nm) and Wenzel roughness ( ) of ∼2.2. The leaf's surface energy was estimated to be 9.47 ± 0.03 mJ·m by incorporating r into the van Oss-Good-Chaudhary theory. The leaves exhibited static contact angle of 157 ± 1°, roll-off angle of 9 ± 1°, and contact angle hysteresis of 12 ± 4°, which retained as they aged up to 186 days in the natural weather and laboratory conditions. The water droplets (10 μL, 40 μL) bounced off for free-fall heights from 5 cm to ∼13 m (Weber no. 36 to ∼2990) and displayed robust rain-repellency (Weber no. ∼4500), similar to that of a lotus leaf. Also, Bauhinia leaves survived pressurized water jets (Weber no. ∼4240). Nevertheless, underwater hydrophobicity has been persistent only for up to 3 h when submerged in 20 cm (∼1.96 kPa gauge pressure) deep water, while lotus leaves retained for >7 h. Such robust Bauhinia leaf's nanoplatelets and wax chemistries can be replicated onto glass/metals for preparing rain-repellent surfaces.

摘要

坚固的防雨表面在屋顶、太阳能板、挡风玻璃等方面很有用。在此,展示了树叶优异的防雨性和液滴弹跳特性。它们具有表面微凸起(约13μm、约8μm、约3μm),这些微凸起又由纳米片(约741nm、约59nm)组成,且具有约2.2的文泽尔粗糙度。通过将r纳入范奥丝-古德-乔杜里理论,估计树叶的表面能为9.47±0.03 mJ·m 。树叶的静态接触角为157±1°,滚落角为9±1°,接触角滞后为12±4°,在自然天气和实验室条件下老化长达186天期间这些角度保持不变。水滴(10μL、40μL)从5厘米至约13米的自由落体高度弹起(韦伯数从36至约2990),并表现出强大的防雨性(韦伯数约4500),类似于荷叶。此外,紫荆叶能承受加压水射流(韦伯数约4240)。然而,当浸入20厘米(约1.96 kPa表压)深的水中时,水下疏水性仅持续3小时,而荷叶能保持超过7小时。这种坚固的紫荆叶纳米片和蜡的化学性质可以复制到玻璃/金属上以制备防雨表面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a2c/11223265/b73c257e286a/ao4c01623_0001.jpg

相似文献

1
Robust Rain-Repellency and Droplet Bouncing Properties of Fresh and Aged Leaves Up to 6 Months.
ACS Omega. 2024 Jun 19;9(26):28323-28338. doi: 10.1021/acsomega.4c01623. eCollection 2024 Jul 2.
2
Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
Sci Rep. 2020 Jan 22;10(1):935. doi: 10.1038/s41598-020-57410-2.
3
Mechanism of self-recovery of hydrophobicity after surface damage of lotus leaf.
Plant Methods. 2024 Mar 21;20(1):47. doi: 10.1186/s13007-024-01174-7.
4
Non-wet kingfisher flying in the rain: The water-repellent mechanism of elastic feathers.
J Colloid Interface Sci. 2019 Apr 1;541:56-64. doi: 10.1016/j.jcis.2019.01.070. Epub 2019 Jan 18.
5
Surface morphology and microstructure of Bauhinia variegata L. flowers and leaves.
Micron. 2024 Feb;177:103575. doi: 10.1016/j.micron.2023.103575. Epub 2023 Dec 9.
6
Design of surface hierarchy for extreme hydrophobicity.
Langmuir. 2009 Jun 2;25(11):6129-36. doi: 10.1021/la803249t.
7
Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
Beilstein J Nanotechnol. 2011;2:152-61. doi: 10.3762/bjnano.2.19. Epub 2011 Mar 10.
8
Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
Langmuir. 2023 Jul 25;39(29):10199-10208. doi: 10.1021/acs.langmuir.3c01099. Epub 2023 Jul 12.
9
Ricocheting Droplets Moving on Super-Repellent Surfaces.
Adv Sci (Weinh). 2019 Sep 12;6(21):1901846. doi: 10.1002/advs.201901846. eCollection 2019 Nov 6.
10
When rain collides with plants-patterns and forces of drop impact and how leaves respond to them.
J Exp Bot. 2022 Feb 24;73(4):1155-1175. doi: 10.1093/jxb/erac004.

本文引用的文献

1
Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53394-53402. doi: 10.1021/acsami.0c13477. Epub 2020 Nov 11.
2
Antifouling Strategies for Selective and Sensing.
Chem Rev. 2020 Apr 22;120(8):3852-3889. doi: 10.1021/acs.chemrev.9b00739. Epub 2020 Mar 23.
3
Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
Sci Rep. 2020 Jan 22;10(1):935. doi: 10.1038/s41598-020-57410-2.
4
Robust adhesion of droplets via heterogeneous dynamic petal effects.
J Colloid Interface Sci. 2019 Dec 1;557:737-745. doi: 10.1016/j.jcis.2019.09.070. Epub 2019 Sep 20.
5
Superhydrophobic Blood-Repellent Surfaces.
Adv Mater. 2018 Jun;30(24):e1705104. doi: 10.1002/adma.201705104. Epub 2018 Feb 21.
6
Ultimate Stable Underwater Superhydrophobic State.
Phys Rev Lett. 2017 Sep 29;119(13):134501. doi: 10.1103/PhysRevLett.119.134501. Epub 2017 Sep 27.
8
Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
Langmuir. 2017 Sep 26;33(38):9620-9631. doi: 10.1021/acs.langmuir.7b02183. Epub 2017 Sep 12.
9
Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures.
Phys Rev E. 2017 Jun;95(6-1):063104. doi: 10.1103/PhysRevE.95.063104. Epub 2017 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验