Yan Yuyang, Antolin Nuria, Zhou Luming, Xu Luyang, Vargas Irene Lisa, Gomez Carlos Daniel, Kong Guiping, Palmisano Ilaria, Yang Yi, Chadwick Jessica, Müller Franziska, Bull Anthony M J, Lo Celso Cristina, Primiano Guido, Servidei Serenella, Perrier Jean François, Bellardita Carmelo, Di Giovanni Simone
Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK.
Nature. 2025 Jan;637(8046):698-707. doi: 10.1038/s41586-024-08272-5. Epub 2024 Dec 4.
The stretch reflex is a fundamental component of the motor system that orchestrates the coordinated muscle contractions underlying movement. At the heart of this process lie the muscle spindles (MS), specialized receptors finely attuned to fluctuations in tension within intrafusal muscle fibres. The tension variation in the MS triggers a series of neuronal events including an initial depolarization of sensory type Ia afferents that subsequently causes the activation of motoneurons within the spinal cord. This neuronal cascade culminates in the execution of muscle contraction, underscoring a presumed closed-loop mechanism between the musculoskeletal and nervous systems. By contrast, here we report the discovery of a new population of macrophages with exclusive molecular and functional signatures within the MS that express the machinery for synthesizing and releasing glutamate. Using mouse intersectional genetics with optogenetics and electrophysiology, we show that activation of MS macrophages (MSMP) drives proprioceptive sensory neuron firing on a millisecond timescale. MSMP activate spinal circuits, motor neurons and muscles by means of a glutamate-dependent mechanism that excites the MS. Furthermore, MSMP respond to neural and muscle activation by increasing the expression of glutaminase, enabling them to convert the uptaken glutamine released by myocytes during muscle contraction into glutamate. Selective silencing or depletion of MSMP in hindlimb muscles disrupted the modulation of the stretch reflex for force generation and sensory feedback correction, impairing locomotor strategies in mice. Our results have identified a new cellular component, the MSMP, that directly regulates neural activity and muscle contraction. The glutamate-mediated signalling of MSMP and their dynamic response to sensory cues introduce a new dimension to our understanding of sensation and motor action, potentially offering innovative therapeutic approaches in conditions that affect sensorimotor function.
牵张反射是运动系统的一个基本组成部分,它协调运动背后的肌肉协同收缩。这一过程的核心是肌梭(MS),它是一种特殊的感受器,能精确地感知梭内肌纤维张力的变化。肌梭内的张力变化会引发一系列神经元活动,包括感觉Ia型传入神经的初始去极化,随后导致脊髓内运动神经元的激活。这种神经元级联反应最终导致肌肉收缩的执行,强调了肌肉骨骼系统和神经系统之间可能存在的闭环机制。相比之下,我们在此报告发现了一种新的巨噬细胞群体,它们在肌梭内具有独特的分子和功能特征,并表达合成和释放谷氨酸的机制。通过将小鼠交叉遗传学与光遗传学和电生理学相结合,我们发现激活肌梭巨噬细胞(MSMP)能在毫秒级时间尺度上驱动本体感觉神经元放电。MSMP通过一种依赖谷氨酸的机制激活脊髓回路、运动神经元和肌肉,该机制会刺激肌梭。此外,MSMP通过增加谷氨酰胺酶的表达来响应神经和肌肉激活,使它们能够将肌肉收缩期间肌细胞释放的摄取谷氨酰胺转化为谷氨酸。选择性沉默或清除后肢肌肉中的MSMP会破坏牵张反射对力量产生和感觉反馈校正的调节,损害小鼠的运动策略。我们的研究结果确定了一种新的细胞成分,即MSMP,它直接调节神经活动和肌肉收缩。MSMP的谷氨酸介导信号及其对感觉线索的动态反应为我们对感觉和运动行为的理解引入了一个新的维度,可能为影响感觉运动功能的疾病提供创新的治疗方法。