Suppr超能文献

受鸟类启发的多功能腿部实现快速地对空转换。

Fast ground-to-air transition with avian-inspired multifunctional legs.

作者信息

Shin Won Dong, Phan Hoang-Vu, Daley Monica A, Ijspeert Auke J, Floreano Dario

机构信息

Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Neuromechanics Lab, University of California, Irvine, Irvine, CA, USA.

出版信息

Nature. 2024 Dec;636(8041):86-91. doi: 10.1038/s41586-024-08228-9. Epub 2024 Dec 4.

Abstract

Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility limits most existing aerial robots to only one additional locomotor mode. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.

摘要

大多数鸟类能够在空中和陆地环境之间无缝导航。虽然前肢主要进化成翅膀用于飞行,但后肢具有多种功能,如行走、跳跃和飞跃,以及通过跳跃起飞实现向飞行的过渡。这些能力启发工程师们在空中机器人中追求类似的多模态功能,以扩大其在不同环境中的应用范围。然而,在再现多模态运动时仍存在挑战,即在保持飞行所需的轻质量的同时,跨越具有不同运动学和推进特性的步态,如行走和跳跃。机械复杂性和多功能性之间的这种权衡限制了大多数现有的空中机器人只能采用一种额外的运动模式。在这里,我们通过RAVEN(适用于多种环境的受鸟类启发的机器人飞行器)克服了复杂性与多功能性之间的权衡,它利用受鸟类启发的多功能腿部迅速跳跃起飞、在地面行走,并跨越障碍物和间隙,类似于鸟类的多模态运动。我们表明,跳跃起飞对初始飞行起飞速度有很大贡献,而且值得注意的是,它比不跳跃起飞更节能。我们的分析表明,在适应不同运动策略的鸟类中,腿部和身体之间的质量分布存在重要的权衡,多模态步态需求大的陆生鸟类在腿部质量上的投入更大。多功能机器人腿通过自主起飞和多模态步态,为在复杂地形中部署传统固定翼飞机提供了更多机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验