Suppr超能文献

基于数字乳腺摄影的机器学习可减少对BI-RADS 4类良性钙化进行侵入性活检的需求。

Machine Learning Based on Digital Mammography to Reduce the Need for Invasive Biopsies of Benign Calcifications Classified in BI-RADS Category 4.

作者信息

Wang Neng, Xu Wenjie, Wang Huogen, Wu Sikai, Wang Jian, Ao Weiqun, Zhang Cui, Zhu Yun, Xie Zongyu, Mao Guoqun

机构信息

The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.

Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui RoadZhejiang Province, Hangzhou, 310012, China.

出版信息

J Imaging Inform Med. 2024 Dec 4. doi: 10.1007/s10278-024-01347-9.

Abstract

This study aims to develop a machine learning model applied on digital mammograms to reduce unnecessary invasive biopsies for suspicious calcifications classified as BI-RADS category 4. This study retrospectively analyzed data from 372 female patients with pathologically confirmed BI-RADS category 4 mammographic calcifications. Patients from the First Affiliated Hospital of Bengbu Medical College (n = 275) were divided chronologically into a training and internal validation set. An external validation set (n = 97) was recruited from Tongde Hospital of Zhejiang Province. We first segmented calcifications using nnUnet, and then built a radiomics model and deep learning model, respectively. Finally, we used an information fusion method to combine the results of the two models to obtain the final prediction. The different models, including the radiomics model, the deep learning model, and the fusion model, were evaluated on the validation set from two hospitals. In the external validation set, the radiomics model yielded an AUC of 0.883 (95% CI, 0.802-0.939), a sensitivity of 0.921, and a specificity of 0.735, and the deep learning model yielded an AUC of 0.873 (95% CI, 0.789-0.932), a sensitivity of 0.905, and a specificity of 0.853. The fusion model achieved an AUC of 0.947 (95% CI, 0.882-0.982), sensitivity of 0.825, and specificity of 0.941 in the external validation set. The fusion model has the potential to reduce the need for invasive biopsies of benign mammographic calcifications classified as BI-RADS category 4, without sacrificing the diagnostic accuracy for malignant cases.

摘要

本研究旨在开发一种应用于数字化乳腺钼靶图像的机器学习模型,以减少对分类为BI-RADS 4类的可疑钙化进行不必要的侵入性活检。本研究回顾性分析了372例经病理证实为BI-RADS 4类乳腺钼靶钙化的女性患者的数据。蚌埠医学院第一附属医院的患者(n = 275)按时间顺序分为训练集和内部验证集。从浙江省同德医院招募了外部验证集(n = 97)。我们首先使用nnUnet对钙化进行分割,然后分别建立了放射组学模型和深度学习模型。最后,我们使用信息融合方法将两个模型的结果相结合,以获得最终预测。在两家医院的验证集上对包括放射组学模型、深度学习模型和融合模型在内的不同模型进行了评估。在外部验证集中,放射组学模型的AUC为0.883(95%CI,0.802-0.939),灵敏度为0.921,特异性为0.735,深度学习模型的AUC为0.873(95%CI,0.789-0.932),灵敏度为0.905,特异性为0.853。融合模型在外部验证集中的AUC为0.947(95%CI,0.882-0.982),灵敏度为0.825,特异性为0.941。融合模型有可能减少对分类为BI-RADS 4类的良性乳腺钼靶钙化进行侵入性活检的需求,而不牺牲对恶性病例的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验