Suppr超能文献

深度学习术前乳腺 MRI 影像组学预测乳腺癌腋窝淋巴结转移。

Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer.

机构信息

Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.

Department of Medicine, GE Healthcare, No. 1, Huatuo Road, 210000, Shanghai, China.

出版信息

J Digit Imaging. 2023 Aug;36(4):1323-1331. doi: 10.1007/s10278-023-00818-9. Epub 2023 Mar 27.

Abstract

The objective of this study is to develop a radiomic signature constructed from deep learning features and a nomogram for prediction of axillary lymph node metastasis (ALNM) in breast cancer patients. Preoperative magnetic resonance imaging data from 479 breast cancer patients with 488 lesions were studied. The included patients were divided into two cohorts by time (training/testing cohort, n = 366/122). Deep learning features were extracted from diffusion-weighted imaging-quantitatively measured apparent diffusion coefficient (DWI-ADC) imaging and dynamic contrast-enhanced MRI (DCE-MRI) by a pretrained neural network of DenseNet121. After the selection of both radiomic and clinicopathological features, deep learning signature and a nomogram were built for independent validation. Twenty-three deep learning features were automatically selected in the training cohort to establish the deep learning signature of ALNM. Three clinicopathological factors, including LN palpability (odds ratio (OR) = 6.04; 95% confidence interval (CI) = 3.06-12.54, P = 0.004), tumor size in MRI (OR = 1.45, 95% CI = 1.18-1.80, P = 0.104), and Ki-67 (OR = 1.01; 95% CI = 1.00-1.02, P = 0.099), were selected and combined with radiomic signature to build a combined nomogram. The nomogram showed excellent predictive ability for ALNM (AUC 0.80 and 0.71 in training and testing cohorts, respectively). The sensitivity, specificity, and accuracy were 65%, 80%, and 75%, respectively, in the testing cohort. MRI-based deep learning radiomics in patients with breast cancer could be used to predict ALNM, providing a noninvasive approach to structuring the treatment strategy.

摘要

本研究旨在开发一种基于深度学习特征的放射组学特征,并构建一个列线图用于预测乳腺癌患者的腋窝淋巴结转移(ALNM)。对 479 例乳腺癌患者的 488 个病灶的术前磁共振成像数据进行了研究。将纳入的患者按时间分为两组(训练/测试队列,n=366/122)。从弥散加权成像定量表观扩散系数(DWI-ADC)成像和动态对比增强磁共振成像(DCE-MRI)中提取由预训练的 DenseNet121 神经网络提取的深度学习特征。在选择放射组学和临床病理特征后,构建了深度学习特征和列线图以进行独立验证。在训练队列中自动选择了 23 个深度学习特征来建立 ALNM 的深度学习特征。包括 LN 触诊(比值比(OR)= 6.04;95%置信区间(CI)= 3.06-12.54,P=0.004)、MRI 中肿瘤大小(OR= 1.45,95%CI = 1.18-1.80,P=0.104)和 Ki-67(OR= 1.01;95%CI = 1.00-1.02,P=0.099)在内的三个临床病理因素被选择并与放射组学特征相结合,构建了联合列线图。列线图显示出对 ALNM 的出色预测能力(在训练和测试队列中的 AUC 分别为 0.80 和 0.71)。在测试队列中,其灵敏度、特异性和准确性分别为 65%、80%和 75%。MRI 基于深度学习的放射组学可用于预测 ALNM,为制定治疗策略提供了一种非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a48/10406743/ce772a01f308/10278_2023_818_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验