Niraimathi Janardhanam, Saravanan Subbarayan
Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
Environ Monit Assess. 2024 Dec 5;197(1):23. doi: 10.1007/s10661-024-13487-0.
Paddy crop mapping is essential for agricultural monitoring, ensuring food security, and enhancing resource allocation. This study observes the Cauvery Delta Zone (CDZ), recognized as the rice bowl of Tamil Nadu and a crucial area for paddy farming in India. The study seeks to elucidate rice-growing trends over three years (2021-2023) by examining the regional variability of the Radar Vegetation Index (RVI) throughout a paddy crop growing season (June to September). A temporal examination of the RVI and the cross-polarization ratio (VH/VV) demonstrates a good correlation of 0.79, enhancing the comprehension of paddy crop dynamics. Additionally, machine learning algorithms such as random forest (RF), support vector machine (SVM), and decision tree (DT) are utilized on radar data in both VV and VH polarizations to improve the classification of paddy fields. The accuracy evaluation indicates that the RF algorithm exhibits superior performance, achieving accuracies of 86.72% in VH mode and 86.42% in VV mode. The results underscore the efficacy of integrating radar-based indices with machine learning methodologies for proficient agricultural surveillance. These findings offer essential assistance for enhancing crop yield, optimizing resource management, and enabling informed decision-making in the Cauvery Delta Zone.
水稻作物测绘对于农业监测、确保粮食安全和优化资源配置至关重要。本研究观察了被视为泰米尔纳德邦粮仓以及印度水稻种植关键区域的科韦里河三角洲地区(CDZ)。该研究旨在通过考察整个水稻作物生长季节(6月至9月)雷达植被指数(RVI)的区域变异性,阐明三年(2021 - 2023年)间的水稻种植趋势。对RVI和交叉极化比(VH/VV)的时间分析显示出0.79的良好相关性,有助于加深对水稻作物动态的理解。此外,随机森林(RF)、支持向量机(SVM)和决策树(DT)等机器学习算法被应用于VV和VH极化的雷达数据,以改进稻田分类。准确性评估表明,RF算法表现出卓越性能,在VH模式下准确率达到86.72%,在VV模式下准确率达到86.42%。结果强调了将基于雷达的指数与机器学习方法相结合用于高效农业监测的有效性。这些发现为提高科韦里河三角洲地区的作物产量、优化资源管理以及进行明智决策提供了重要帮助。