Suppr超能文献

利用机器学习模型,通过将生物物理参数与 SAR 和光学遥感数据相结合进行水稻产量预测。

Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models.

机构信息

G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.

ICAR-National Institute of Abiotic Stress Management, Pune, Maharashtra, India.

出版信息

Sci Rep. 2024 Sep 17;14(1):21674. doi: 10.1038/s41598-024-72624-4.

Abstract

In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.

摘要

在全球人口增长和气候变化多变的时代,确保粮食安全已成为当务之急。水稻作为数十亿人的主食,需要准确和及时的产量预测,以确保全球粮食安全。本研究在印度北阿坎德邦乌塔姆辛格讷格尔区的两个水稻种植季节进行,通过机器学习(ML)模型,利用光学和合成孔径雷达(SAR)数据与作物生物物理参数的组合,预测移栽后 45、60 和 90 天的水稻产量。结果表明,ML 模型能够提供相对准确的早期产量估计。对于夏稻,极端梯度提升(XGB)在所有三个阶段(移栽后 45、60 和 90 天)的表现都是最好的,而对于雨季稻,在 45、60 和 90 天的最佳表现模型分别是 XGB、神经网络(NNET)和立方回归。ML 模型的综合排名表明,预测精度随着预测日期接近收获而提高,对夏稻和雨季稻的产量最佳预测都是在 90 天 DAT 观察到的。总体排名表明,对于夏稻,排名前三的模型是 XGB、NNET 和支持向量回归,而对于雨季稻,排名前三的模型是 Cubist、NNET 和随机森林。本研究的结果提供了有价值的见解,即利用 ML 模型结合遥感和生物物理参数的潜力,通过使农民、政策规划者和研究人员等利益相关者能够做出更明智的决策,从而增强粮食安全规划和资源管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109f/11408675/2e024cad033c/41598_2024_72624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验