Suppr超能文献

用于定量测定少量血浆样本中泊沙康唑的高效液相色谱-紫外检测法的开发:实验设计与机器学习模型

Development of an HPLC-UV method for quantification of posaconazole in low-volume plasma samples: design of experiments and machine learning models.

作者信息

Bayat Fereshteh, Hashemi Baghi Ali, Abbasian Zahra, Dadashzadeh Simin, Aboofazeli Reza, Haeri Azadeh

机构信息

Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155‒6153, Tehran, Iran.

Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.

出版信息

BMC Chem. 2024 Dec 4;18(1):238. doi: 10.1186/s13065-024-01349-2.

Abstract

Posaconazole (PCZ) is a triazole antifungal agent with a broad-spectrum activity. Our research aims to present a novel approach by combining a 2-level fractional factorial design and machine learning to optimize both chromatography and extraction experiments, allowing for the development of a rapid method with a low limit of quantification (LOQ) in low-volume plasma samples. The PCZ retention time at the optimized condition (organic phase 58%, methanol 6%, mobile pH = 7, column temperature: 39 °C, and flow rate of 1.2 mL/min) was found to be 8.2 ± 0.2 min, and the recovery of the PCZ at the optimized extraction condition (500 µL extraction solvent, NaCl 10% w/v, plasma pH = 11, extraction time = 10 min, and centrifuge time = 1 min) was calculated above 98%. The results of machine learning models were in line with the results of experimental design. Method validation was performed according to ICH guideline. The method was linear in the range of 50-2000 ng/mL and LOQ was found to be 50 ng/mL. Additionally, the validated method was applied to analyze PCZ nanomicelles and conduct pharmacokinetic studies on rats. Half-life (t), mean residence time (MRT), and the area under the drug concentration-time curve (AUC) were found to be 7.1 ± 0.6 h, 10.5 ± 0.9 h, and 1725.7 ± 44.1 ng × h/mL, respectively.

摘要

泊沙康唑(PCZ)是一种具有广谱活性的三唑类抗真菌剂。我们的研究旨在提出一种新方法,将二级析因设计与机器学习相结合,以优化色谱和萃取实验,从而开发出一种在低体积血浆样本中具有低定量限(LOQ)的快速方法。在优化条件下(有机相58%、甲醇6%、流动相pH = 7、柱温:39℃、流速1.2 mL/min),PCZ的保留时间为8.2±0.2分钟,在优化萃取条件下(500 μL萃取溶剂、10% w/v氯化钠、血浆pH = 11、萃取时间 = 10分钟、离心时间 = 1分钟),PCZ的回收率经计算高于98%。机器学习模型的结果与实验设计的结果一致。根据国际人用药品注册技术协调会(ICH)指南进行了方法验证。该方法在50 - 2000 ng/mL范围内呈线性,定量限为50 ng/mL。此外,该经过验证的方法被应用于分析PCZ纳米胶束并对大鼠进行药代动力学研究。半衰期(t)、平均驻留时间(MRT)和药物浓度 - 时间曲线下面积(AUC)分别为7.1±0.6小时、10.5±0.9小时和1725.7±44.1 ng×h/mL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d3/11619427/5368265c65ae/13065_2024_1349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验