Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
Anal Bioanal Chem. 2023 Jul;415(18):3945-3966. doi: 10.1007/s00216-023-04620-y. Epub 2023 Mar 3.
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
表面增强拉曼光谱(SERS)由于其提供丰富的化学信息和高灵敏度而受到越来越多的关注,适用于许多科学领域,包括医学诊断、法医学分析、食品控制和微生物学。尽管 SERS 在分析复杂基质样品时通常受到选择性的限制,但已经证明使用多元统计和数学工具是解决此问题的有效策略。重要的是,由于人工智能的快速发展推动了各种先进的多元方法在 SERS 中的应用,因此有必要讨论它们协同作用的程度和可能的标准化。本综述包括将 SERS 与化学计量学和机器学习相结合用于定性和定量分析应用的原理、优点和局限性。还讨论了结合不常用但功能强大的数据分析工具的 SERS 的最新进展和趋势。最后,还包括一个关于基准测试和选择合适的化学计量学/机器学习方法的提示的部分。我们相信,这将有助于将 SERS 从替代检测策略转变为适用于实际应用的通用分析技术。