Suppr超能文献

冠状动脉疾病亚型的临床与基因组预测

Clinical and Genomic Prediction of Coronary Artery Disease Subtypes.

作者信息

Liou Lathan, García-González Judit, Wu Hei Man, Wang Zhe, Hoggart Clive J, Kontorovich Amy R, Kovacic Jason C, O'Reilly Paul F

机构信息

Department of Genetics and Genomic Sciences (L.L., J.G.-G., H.M.W., C.J.H., P.F.O.), Icahn School of Medicine, New York, NY.

Charles Bronfman Institute for Personalized Medicine (Z.W.), Icahn School of Medicine, New York, NY.

出版信息

Arterioscler Thromb Vasc Biol. 2025 Jan;45(1):90-103. doi: 10.1161/ATVBAHA.124.321846. Epub 2024 Dec 5.

Abstract

BACKGROUND

Coronary artery disease (CAD) is a complex, heterogeneous disease with distinct etiological mechanisms. These different etiologies may give rise to multiple subtypes of CAD that could benefit from alternative preventions and treatments. However, so far, there have been no systematic efforts to predict CAD subtypes using clinical and genetic factors.

METHODS

Here, we trained and applied statistical models incorporating clinical and genetic factors to predict CAD subtypes in 26 036 patients with CAD in the UK Biobank. We performed external validation of the UK Biobank models in the US-based All of Us cohort (8598 patients with CAD). Subtypes were defined as high versus normal LDL (low-density lipoprotein) levels, high versus normal Lpa (lipoprotein A) levels, ST-segment-elevation myocardial infarction versus non-ST-segment-elevation myocardial infarction, occlusive versus nonocclusive CAD, and stable versus unstable CAD. Clinical predictors included levels of ApoA, ApoB, HDL (high-density lipoprotein), triglycerides, and CRP (C-reactive protein). Genetic predictors were genome-wide and pathway-based polygenic risk scores (PRSs).

RESULTS

Results showed that both clinical-only and genetic-only models can predict CAD subtypes, while combining clinical and genetic factors leads to greater predictive accuracy. Pathway-based PRSs had higher discriminatory power than genome-wide PRSs for the Lpa and LDL subtypes and provided insights into their etiologies. The 10-pathway PRS most predictive of the LDL subtype involved cholesterol metabolism. Pathway PRS models had poor generalizability to the All of Us cohort.

CONCLUSIONS

In summary, we present the first systematic demonstration that CAD subtypes can be distinguished by clinical and genomic risk factors, which could have important implications for stratified cardiovascular medicine.

摘要

背景

冠状动脉疾病(CAD)是一种复杂的异质性疾病,具有不同的病因机制。这些不同的病因可能导致CAD的多种亚型,而这些亚型可能从不同的预防和治疗方法中获益。然而,到目前为止,尚未有系统地利用临床和遗传因素来预测CAD亚型的研究。

方法

在此,我们训练并应用了包含临床和遗传因素的统计模型,以预测英国生物银行中26036例CAD患者的CAD亚型。我们在美国的“我们所有人”队列(8598例CAD患者)中对英国生物银行的模型进行了外部验证。亚型定义为低密度脂蛋白(LDL)水平高与正常、脂蛋白A(Lp(a))水平高与正常、ST段抬高型心肌梗死与非ST段抬高型心肌梗死、闭塞性与非闭塞性CAD、稳定型与不稳定型CAD。临床预测指标包括载脂蛋白A、载脂蛋白B、高密度脂蛋白(HDL)、甘油三酯和C反应蛋白(CRP)水平。遗传预测指标是全基因组和基于通路的多基因风险评分(PRSs)。

结果

结果表明,仅临床模型和仅遗传模型都可以预测CAD亚型,而将临床和遗传因素结合起来可提高预测准确性。基于通路的PRSs对Lp(a)和LDL亚型的区分能力高于全基因组PRSs,并为其病因提供了见解。对LDL亚型预测性最强的10通路PRS涉及胆固醇代谢。通路PRS模型在“我们所有人”队列中的泛化性较差。

结论

总之,我们首次系统地证明了CAD亚型可通过临床和基因组风险因素来区分,这可能对分层心血管医学具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验