Suppr超能文献

心血管疾病预防中的精准医学:美国队列中多血统多基因风险评分的临床验证

Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort.

作者信息

Ponikowska Małgorzata, Di Domenico Paolo, Bolli Alessandro, Busby George Bartholomew, Perez Emma, Bottà Giordano

机构信息

Allelica Inc., San Francisco, CA 94105, USA.

Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.

出版信息

Nutrients. 2025 Mar 6;17(5):926. doi: 10.3390/nu17050926.

Abstract

BACKGROUND

Polygenic risk score (PRS) quantifies the cumulative effects of common genetic variants across the genome, including both coding and non-coding regions, to predict the risk of developing common diseases. In cardiovascular medicine, PRS enhances risk stratification beyond traditional clinical risk factors, offering a precision medicine approach to coronary artery disease (CAD) prevention. This study evaluates the predictive performance of a multi-ancestry PRS framework for cardiovascular risk assessment using the All of Us (AoU) short-read whole-genome sequencing dataset comprising over 225,000 participants.

METHODS

We developed PRSs for lipid traits (LDL-C, HDL-C, triglycerides) and cardiometabolic conditions (type 2 diabetes, hypertension, atrial fibrillation) and constructed two metaPRSs: one integrating lipid and cardiometabolic PRSs (risk factor metaPRS) and another incorporating CAD PRSs in addition to these risk factors (risk factor + CAD metaPRS). Predictive performance was evaluated separately for each trait-specific PRS and for both metaPRSs to assess their effectiveness in CAD risk prediction across diverse ancestries. Model predictive performance, including calibration, was assessed separately for each ancestry group, ensuring that all metrics were ancestry-specific and that PRSs remain generalizable across diverse populations Results: PRSs for lipids and cardiometabolic conditions demonstrated strong predictive performance across ancestries. The risk factors metaPRS predicted CAD risk across multiple ancestries. The addition of a CAD-specific PRS to the risk factors metaPRS improved predictive performance, highlighting a genetic component in CAD etiopathology that is not fully captured by traditional risk factors, whether clinically measured or genetically inferred. Model calibration and validation across ancestries confirmed the broad applicability of PRS-based approaches in multi-ethnic populations.

CONCLUSION

PRS-based risk stratification provides a reliable, ancestry-inclusive framework for personalized cardiovascular disease prevention, enabling better targeted interventions such as pharmacological therapy and lifestyle modifications. By incorporating genetic information from both coding and non-coding regions, PRSs refine risk prediction across diverse populations, advancing the integration of genomics into precision medicine for common diseases.

摘要

背景

多基因风险评分(PRS)可量化全基因组中常见遗传变异(包括编码区和非编码区)的累积效应,以预测患常见疾病的风险。在心血管医学中,PRS可在传统临床风险因素之外增强风险分层,为冠状动脉疾病(CAD)的预防提供精准医学方法。本研究使用包含超过225,000名参与者的“我们所有人(AoU)”短读长全基因组测序数据集,评估了多祖先PRS框架用于心血管风险评估的预测性能。

方法

我们针对脂质性状(低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、甘油三酯)和心脏代谢疾病(2型糖尿病、高血压、心房颤动)开发了PRS,并构建了两个元PRS:一个整合脂质和心脏代谢PRS(风险因素元PRS),另一个除这些风险因素外还纳入CAD PRS(风险因素 + CAD元PRS)。分别评估每个性状特异性PRS以及两个元PRS的预测性能,以评估它们在不同祖先人群中预测CAD风险的有效性。针对每个祖先群体分别评估模型预测性能,包括校准,确保所有指标都是特定于祖先的,并且PRS在不同人群中仍具有通用性。结果:脂质和心脏代谢疾病的PRS在各祖先群体中均表现出强大的预测性能。风险因素元PRS在多个祖先群体中预测CAD风险。在风险因素元PRS中添加CAD特异性PRS可提高预测性能,突出了CAD病因学中的一个遗传成分,该成分无论是通过临床测量还是基因推断的传统风险因素都无法完全捕捉到。跨祖先群体的模型校准和验证证实了基于PRS的方法在多民族人群中的广泛适用性。

结论

基于PRS的风险分层为个性化心血管疾病预防提供了一个可靠的、包含所有祖先群体的框架,能够实现更好的针对性干预,如药物治疗和生活方式改变。通过整合来自编码区和非编码区的遗传信息,PRS可优化不同人群的风险预测,推动基因组学融入常见疾病的精准医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19a/11901995/1719cdce0f15/nutrients-17-00926-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验