Ricchiuti Giovanna, Walsh Anton, Mendoza-Castro Jesús Hernán, Vorobev Artem S, Kotlyar Maria, Lukasievicz Gustavo V B, Iadanza Simone, Grande Marco, Lendl Bernhard, O'Faolain Liam
Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 T66T Bishopstown, Cork, Ireland.
Nanophotonics. 2024 Mar 15;13(13):2417-2427. doi: 10.1515/nanoph-2024-0033. eCollection 2024 May.
Laser-based mid-infrared (mid-IR) photothermal spectroscopy (PTS) represents a selective, fast, and sensitive analytical technique. Recent developments in laser design permits the coverage of wider spectral regions in combination with higher power, enabling for qualitative reconstruction of broadband absorption features, typical of liquid or solid samples. In this work, we use an external cavity quantum cascade laser (EC-QCL) that emits in pulsed mode in the region between 5.7 and 6.4 µm (1770-1560 cm), to measure the absorption spectrum of a thin film of polymethyl methacrylate (PMMA) spin-coated on top of a silicon nitride (SiN) micro-ring resonator (MRR). Being the PTS signal inversely proportional to the volume of interaction, in the classical probe-pump dual beam detection scheme, we exploit a SiN transducer coated with PMMA, as a proof-of-principle for an on-chip photothermal sensor. By tuning the probe laser at the inflection point of one resonance, aiming for highest sensitivity, we align the mid-IR beam on top of the ring's area, in a transversal configuration. To maximize the amplitude of the photoinduced thermal change, we focus the mid-IR light on top of the ring using a Cassegrain reflector enabling for an optimal match between ring size and beam waist of the excitation source. We briefly describe the transducer design and fabrication process, present the experimental setup, and perform an analysis for optimal operational parameters. We comment on the obtained results showing that PTS allows for miniaturized robust sensors opening the path for on-line/in-line monitoring in several industrial processes.
基于激光的中红外光热光谱技术(PTS)是一种选择性高、速度快且灵敏度高的分析技术。激光设计的最新进展使得在更高功率的情况下能够覆盖更宽的光谱区域,从而能够对液体或固体样品典型的宽带吸收特征进行定性重建。在这项工作中,我们使用了一种外腔量子级联激光器(EC-QCL),它在5.7至6.4微米(1770-1560厘米)之间的区域以脉冲模式发射,用于测量旋涂在氮化硅(SiN)微环谐振器(MRR)顶部的聚甲基丙烯酸甲酯(PMMA)薄膜的吸收光谱。由于PTS信号与相互作用体积成反比,在经典的探测-泵浦双光束检测方案中,我们利用涂覆有PMMA的SiN换能器,作为片上光热传感器的原理验证。通过将探测激光调谐到一个共振的拐点,以实现最高灵敏度,我们将中红外光束以横向配置对准环区域的顶部。为了使光致热变化的幅度最大化,我们使用卡塞格伦反射器将中红外光聚焦在环的顶部,从而实现环尺寸与激发源束腰之间的最佳匹配。我们简要描述了换能器的设计和制造过程,介绍了实验装置,并对最佳操作参数进行了分析。我们对所得结果进行了评论,表明PTS能够实现小型化的坚固传感器,为多个工业过程中的在线/在线监测开辟了道路。