Kim Moohyuk, Park Nu-Ri, Yu Aran, Kim Jin Tae, Jeon Minseok, Jeon Seung-Woo, Han Sang-Wook, Kim Myung-Ki
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea.
Quantum Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.
Nanophotonics. 2023 Feb 8;12(13):2359-2369. doi: 10.1515/nanoph-2022-0762. eCollection 2023 Jun.
Metasurface technology is revolutionizing the field of optics and pursuing expanded functions via technical developments, such as the integration of multiple metasurfaces with optical fibers. Despite several attempts to realize metasurface-on-fiber platforms, negligible fiber-facet areas pose a serious obstacle to efficient and precise fabrication. Herein, we demonstrate a novel sequential micro-punching process that enables rapid and precise stacking of multiple polymer metasurfaces on the end face of a single-mode optical fiber. Mesh-type nanohole metasurfaces are fabricated on a 1.8-μm-thick polymethyl methacrylate (PMMA) layer via e-beam lithography, and the PMMA layer is separated from the substrate and prepared in the form of a membrane using the external frame. Furthermore, the PMMA metasurfaces are sequentially punched through the fiber and stacked on top. Employing a micro-punching process, we demonstrate highly efficient all-polymer metalenses and orbital angular momentum (OAM) metasurfaces coupled with single-mode fibers operating in the telecommunication band. A 1550 nm laser beam passing through three metalens layers stacked on the fiber is focused at a distance of 135 μm with 83% efficiency. In addition, the 1550 nm beam passing through three OAM metasurfaces on the fiber is converted into a perfect vortex beam with a topological charge of 3. We believe that our proposed micro-punching process will cause a breakthrough in the fabrication of metasurface-integrated optical fibers that will be utilized in a wide range of applications.
超表面技术正在彻底改变光学领域,并通过技术发展追求扩展功能,例如将多个超表面与光纤集成。尽管人们多次尝试实现光纤上的超表面平台,但可忽略不计的光纤端面面积对高效精确制造构成了严重障碍。在此,我们展示了一种新颖的顺序微冲压工艺,该工艺能够在单模光纤端面上快速精确地堆叠多个聚合物超表面。通过电子束光刻在1.8μm厚的聚甲基丙烯酸甲酯(PMMA)层上制备网状纳米孔超表面,然后将PMMA层与衬底分离,并使用外部框架制成膜状。此外,PMMA超表面依次穿过光纤并堆叠在其顶部。通过采用微冲压工艺,我们展示了与工作在电信波段的单模光纤耦合的高效全聚合物金属透镜和轨道角动量(OAM)超表面。一束1550nm的激光束穿过堆叠在光纤上的三层金属透镜后,以83%的效率聚焦在135μm的距离处。此外,穿过光纤上三个OAM超表面的1550nm光束被转换为拓扑电荷为3的完美涡旋光束。我们相信,我们提出的微冲压工艺将在超表面集成光纤的制造方面带来突破,这种光纤将在广泛的应用中得到利用。