Fröch Johannes E, Huang Luocheng, Zhou Zhihao, Tara Virat, Fang Zhuoran, Colburn Shane, Zhan Alan, Choi Minho, Manna Arnab, Tang Andrew, Han Zheyi, Böhringer Karl F, Majumdar Arka
Department of Physics, University of Washington, Seattle, WA, 98195, USA.
Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
Light Sci Appl. 2025 Jun 18;14(1):217. doi: 10.1038/s41377-025-01888-w.
Silicon is a common material of choice for semiconductor optics in the infrared spectral range, due to its low cost, well-developed high-volume manufacturing methods, high refractive index, and transparency. It is, however, typically ill-suited for applications in the visible range, due to its large absorption coefficient, especially for green and blue light. Counterintuitively, we demonstrate how ultra-thin crystalline meta-optics enable full-color imaging in the visible range. For this purpose, we employ an inverse design approach, which maximizes the volume under the broadband modulation transfer function of the meta-optics. Beyond that, we demonstrate polarization-multiplexed functionality in the visible. This is particularly important as polarization optics require high index materials, a characteristic often difficult to obtain in the visible.
硅是红外光谱范围内半导体光学器件常用的材料选择,这归因于其低成本、成熟的大批量制造工艺、高折射率和透明度。然而,由于其较大的吸收系数,特别是对绿光和蓝光的吸收系数较大,通常不适合用于可见光范围的应用。与直觉相反,我们展示了超薄晶体超表面光学器件如何实现可见光范围内的全彩成像。为此,我们采用了一种逆向设计方法,该方法使超表面光学器件的宽带调制传递函数下的体积最大化。除此之外,我们还展示了可见光中的偏振复用功能。这一点尤为重要,因为偏振光学器件需要高折射率材料,而这一特性在可见光中往往难以实现。