Suppr超能文献

通过皮质发育的形状描述符预测胎儿孕周。

Fetal gestational age prediction via shape descriptors of cortical development.

作者信息

Ciceri Tommaso, Squarcina Letizia, Bertoldo Alessandra, Brambilla Paolo, Melzi Simone, Peruzzo Denis

机构信息

NeuroImaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.

Department of Information Engineering, University of Padua, Padua, Italy.

出版信息

Front Pediatr. 2024 Nov 20;12:1471080. doi: 10.3389/fped.2024.1471080. eCollection 2024.

Abstract

INTRODUCTION

Gyrification is the intricate process through which the mammalian cerebral cortex develops its characteristic pattern of sulci and gyri. Monitoring gyrification provides valuable insights into brain development and identifies potential abnormalities at an early stage. This study analyzes the cortical structure in neurotypical and pathological (spina bifida) fetuses using various shape descriptors to shed light on the gyrification process during pregnancy.

METHODS

We compare morphometric properties encoded by commonly used scalar point-wise curvature-based signatures-such as mean curvature (H), Gaussian curvature (K), shape index (SI), and curvedness (C)-with multidimensional point-wise shape signatures, including spectral geometry processing methods like the Heat Kernel Signature (HKS) and Wave Kernel Signature (WKS), as well as the Signature of Histograms of Orientations (SHOT), which combines histogram and signature techniques. These latter signatures originate from computer graphics techniques and are rarely applied in the medical field. We propose a novel technique to derive a global descriptor from a given point-wise signature, obtaining GHKS, GWKS, and GSHOT. The extracted signatures are then evaluated using Support Vector Regression (SVR)-based algorithms to predict fetal gestational age (GA).

RESULTS

GSHOT better encodes the GA to other global multidimensional point-wise shape signatures (GHKS, GWKS) and commonly used scalar point-wise curvature-based signatures (C, H, K, SI, FI), achieving a prediction of 0.89 and a mean absolute error of 6 days in neurotypical fetuses, and a of 0.64 and a mean absolute error of 10 days in pathological fetuses.

CONCLUSION

GSHOT provides researchers with an advanced tool to capture more nuanced aspects of fetal brain development and, specifically, of the gyrification process.

摘要

引言

脑回形成是哺乳动物大脑皮质形成其特有的脑沟和脑回模式的复杂过程。监测脑回形成可为大脑发育提供有价值的见解,并在早期识别潜在异常。本研究使用各种形状描述符分析了典型和病理性(脊柱裂)胎儿的皮质结构,以阐明孕期的脑回形成过程。

方法

我们将常用的基于标量逐点曲率的特征(如平均曲率(H)、高斯曲率(K)、形状指数(SI)和曲率(C))所编码的形态测量属性与多维逐点形状特征进行比较,这些多维逐点形状特征包括热核特征(HKS)和波核特征(WKS)等谱几何处理方法,以及结合了直方图和特征技术的方向直方图特征(SHOT)。后一种特征源自计算机图形技术,在医学领域很少应用。我们提出了一种新技术,从给定的逐点特征中导出全局描述符,得到GHKS、GWKS和GSHOT。然后使用基于支持向量回归(SVR)的算法评估提取的特征,以预测胎儿的胎龄(GA)。

结果

与其他全局多维逐点形状特征(GHKS、GWKS)和常用的基于标量逐点曲率的特征(C、H、K、SI、FI)相比,GSHOT能更好地编码胎龄,在典型胎儿中预测准确率为0.89,平均绝对误差为6天,在病理性胎儿中预测准确率为0.64,平均绝对误差为10天。

结论

GSHOT为研究人员提供了一种先进工具,以捕捉胎儿大脑发育,特别是脑回形成过程中更细微的方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee9/11614626/4a01abcf14bf/fped-12-1471080-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验