Suppr超能文献

如何从磁共振图像测量皮质折叠:计算局部脑回指数的分步教程。

How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index.

作者信息

Schaer Marie, Cuadra Meritxell Bach, Schmansky Nick, Fischl Bruce, Thiran Jean-Philippe, Eliez Stephan

机构信息

Department of Psychiatry, University of Geneva School of Medicine.

出版信息

J Vis Exp. 2012 Jan 2(59):e3417. doi: 10.3791/3417.

Abstract

Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.

摘要

皮质折叠(脑回形成)在生命的最初几个月就已确定,因此在此期间发生的不良事件会留下痕迹,这些痕迹在任何年龄都可被识别。正如曼金及其同事最近所综述的那样(2),存在多种方法来量化脑回形成的不同特征。例如,脑沟形态测量法可用于测量诸如深度、长度或半球间不对称指数等形状描述符(3)。这些几何特性具有易于解释的优点。然而,脑沟形态测量法紧密依赖于对给定脑沟集的准确识别,因此提供了对脑回形成的碎片化描述。使用基于曲率的测量可以实现对脑回形成更精细的量化,其中通常在皮质表面的数千个点上计算平滑后的绝对平均曲率(4)。然而,曲率并不容易理解,因为目前尚不清楚曲率与诸如皮质体积或表面积等生物学上有意义的关联之间是否存在任何直接关系。为了解决皮质折叠测量所引发的各种问题,我们之前开发了一种算法,以极高的空间分辨率和简单的解释来量化局部脑回形成。我们的方法受到脑回形成指数(5)的启发,该方法最初用于比较神经解剖学中,以评估不同物种间的皮质折叠差异。在我们的实现中,我们将其命名为局部脑回形成指数(lGI(1)),我们测量脑沟褶皱内埋藏的皮质量与感兴趣圆形区域中可见皮质量的比值。鉴于皮质主要通过径向扩展生长(6),我们的方法专门设计用于识别皮质发育的早期缺陷。在本文中,我们详细介绍局部脑回形成指数的计算方法,该方法现在作为FreeSurfer软件(http://surfer.nmr.mgh.harvard.edu/,马萨诸塞州总医院马丁诺斯生物医学成像中心)的一部分免费发布。FreeSurfer提供了一套从结构MRI数据自动重建脑皮质表面的工具。然后,以亚毫米精度在图像的原始空间中提取的皮质表面被进一步用于创建一个外表面,该外表面将作为lGI计算的基础。然后在外表面上划定一个感兴趣的圆形区域,并使用我们验证研究(1)中描述的匹配算法识别其在皮质表面上的相应感兴趣区域。这个过程在大量重叠的感兴趣区域中反复迭代,从而生成脑回形成的皮质图,用于后续的统计比较(图1)。值得注意的是,托罗及其同事(7)提出了另一种具有类似灵感的局部脑回形成测量方法,其中每个点的折叠指数计算为球体中包含的皮质面积与具有相同半径的圆盘面积之比。这两种实现方式的不同之处在于,托罗等人的方法基于欧几里得距离,因此考虑的是皮质区域的不连续斑块,而我们的方法使用严格的测地线算法,并且只包括在感兴趣圆形区域中在脑表面开口的连续皮质区域斑块。

相似文献

2
A curvature-based approach to estimate local gyrification on the cortical surface.
Neuroimage. 2006 Feb 15;29(4):1224-30. doi: 10.1016/j.neuroimage.2005.08.049. Epub 2005 Oct 11.
3
A cortical shape-adaptive approach to local gyrification index.
Med Image Anal. 2018 Aug;48:244-258. doi: 10.1016/j.media.2018.06.009. Epub 2018 Jun 28.
4
Comparison of cortical folding measures for evaluation of developing human brain.
Neuroimage. 2016 Jan 15;125:780-790. doi: 10.1016/j.neuroimage.2015.11.001. Epub 2015 Nov 6.
5
A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets.
Neuroimage. 2021 Apr 1;229:117751. doi: 10.1016/j.neuroimage.2021.117751. Epub 2021 Jan 15.
6
Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity.
Neuroimage. 2016 Jul 15;135:163-76. doi: 10.1016/j.neuroimage.2016.04.053. Epub 2016 May 3.
7
Local Spectral Analysis of the Cerebral Cortex: New Gyrification Indices.
IEEE Trans Med Imaging. 2017 Mar;36(3):838-848. doi: 10.1109/TMI.2016.2633393. Epub 2016 Nov 29.
8
Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.
Neuroscience. 2014 Jan 17;257:158-74. doi: 10.1016/j.neuroscience.2013.10.067. Epub 2013 Nov 9.
9
NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns.
Neuroimage. 2016 Sep;138:28-42. doi: 10.1016/j.neuroimage.2016.05.034. Epub 2016 May 13.
10
Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci.
PLoS One. 2013;8(2):e55977. doi: 10.1371/journal.pone.0055977. Epub 2013 Feb 13.

引用本文的文献

1
Brain morphology normative modelling platform for abnormality and centile estimation: Brain MoNoCle.
Imaging Neurosci (Camb). 2025 Jan 10;3. doi: 10.1162/imag_a_00438. eCollection 2025.
2
Burst of gyrification in the human brain after birth.
Commun Biol. 2025 May 26;8(1):805. doi: 10.1038/s42003-025-08155-z.
3
Verifying the concordance between motion corrected and conventional MPRAGE for pediatric morphometric analysis.
Front Neurosci. 2025 May 9;19:1534924. doi: 10.3389/fnins.2025.1534924. eCollection 2025.
6
Individualized cortical gyrification in neonates with congenital heart disease.
Brain Commun. 2024 Oct 7;6(5):fcae356. doi: 10.1093/braincomms/fcae356. eCollection 2024.
7
Sex, gender diversity, and brain structure in early adolescence.
Hum Brain Mapp. 2024 Apr;45(5):e26671. doi: 10.1002/hbm.26671.
8
A multiscale characterization of cortical shape asymmetries in early psychosis.
Brain Commun. 2024 Jan 22;6(1):fcae015. doi: 10.1093/braincomms/fcae015. eCollection 2024.
9
Assessing cortical features in early stage ASD children.
Front Psychiatry. 2024 Jan 10;14:1098265. doi: 10.3389/fpsyt.2023.1098265. eCollection 2023.
10
Cortical gyrification pattern of depression in Parkinson's disease: a neuroimaging marker for disease severity?
Front Aging Neurosci. 2023 Nov 14;15:1241516. doi: 10.3389/fnagi.2023.1241516. eCollection 2023.

本文引用的文献

1
Folding of the prefrontal cortex in schizophrenia: regional differences in gyrification.
Biol Psychiatry. 2011 May 15;69(10):974-9. doi: 10.1016/j.biopsych.2010.12.012. Epub 2011 Jan 22.
2
In-vivo measurement of cortical morphology: means and meanings.
Curr Opin Neurol. 2010 Aug;23(4):359-67. doi: 10.1097/WCO.0b013e32833a0afc.
3
Anomalous development of brain structure and function in spina bifida myelomeningocele.
Dev Disabil Res Rev. 2010;16(1):23-30. doi: 10.1002/ddrr.88.
4
Reduced cortical folding in mental retardation.
AJNR Am J Neuroradiol. 2010 Jun;31(6):1063-7. doi: 10.3174/ajnr.A1984. Epub 2010 Jan 14.
5
Congenital heart disease affects local gyrification in 22q11.2 deletion syndrome.
Dev Med Child Neurol. 2009 Sep;51(9):746-53. doi: 10.1111/j.1469-8749.2009.03281.x. Epub 2009 Mar 9.
6
Decreased gyrification in major depressive disorder.
Neuroreport. 2009 Mar 4;20(4):378-80. doi: 10.1097/WNR.0b013e3283249b34.
7
Neurodevelopmental trajectories of the human cerebral cortex.
J Neurosci. 2008 Apr 2;28(14):3586-94. doi: 10.1523/JNEUROSCI.5309-07.2008.
8
A surface-based approach to quantify local cortical gyrification.
IEEE Trans Med Imaging. 2008 Feb;27(2):161-70. doi: 10.1109/TMI.2007.903576.
9
Brain size and folding of the human cerebral cortex.
Cereb Cortex. 2008 Oct;18(10):2352-7. doi: 10.1093/cercor/bhm261. Epub 2008 Feb 10.
10
Regional cortical thickness matters in recall after months more than minutes.
Neuroimage. 2006 Jul 1;31(3):1343-51. doi: 10.1016/j.neuroimage.2006.01.011. Epub 2006 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验