Tahsin Md, Matin Md Mafiul Hasan, Khandaker Mashrufa, Reemu Redita Sultana, Arnab Mehrab Islam, Rashid Mohammad Rifat Ahmmad, Rasel Md Mostofa Kamal, Islam Mohammad Manzurul, Islam Maheen, Ali Md Sawkat
Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh.
Data Brief. 2024 Nov 6;57:111109. doi: 10.1016/j.dib.2024.111109. eCollection 2024 Dec.
This article introduces a comprehensive dataset developed in collaboration with the Bangladesh Institute of Nuclear Agriculture (BINA) and the Bangladesh Rice Research Institute (BRRI), featuring high-resolution images of 38 local rice varieties. Captured using advanced microscopic cameras, the dataset comprises 19,000 original images, enhanced through data augmentation techniques to include an additional 57,000 images, totaling 76,000 images. These techniques, which include transformations such as scaling, rotation, and lighting adjustments, enrich the dataset by simulating various environmental conditions, providing a broader perspective on each variety. The diverse array of rice strains such as BD33, BD30, BD39, among others, are meticulously detailed through their unique characteristics-color, size, and utility in agriculture-providing a rich resource for research. This augmented dataset not only enhances the understanding of rice diversity but also supports the development of innovative agricultural practices and breeding programs, offering a critical tool for researchers aiming to analyze and leverage rice genetic diversity effectively.
本文介绍了一个与孟加拉国核农业研究所(BINA)和孟加拉国水稻研究所(BRRI)合作开发的综合数据集,其中包含38个当地水稻品种的高分辨率图像。该数据集使用先进的显微镜相机拍摄,包含19000张原始图像,通过数据增强技术进一步增加了57000张图像,总计76000张图像。这些技术包括缩放、旋转和光照调整等变换,通过模拟各种环境条件丰富了数据集,为每个品种提供了更广阔的视角。诸如BD33、BD30、BD39等多种水稻品种,通过其独特的特征——颜色、大小和农业用途——得到了细致的描述,为研究提供了丰富的资源。这个扩充后的数据集不仅增进了对水稻多样性的理解,还支持创新农业实践和育种计划的发展,为旨在有效分析和利用水稻遗传多样性的研究人员提供了关键工具。