Mou Ye, Yang Xingyu, Gallas Bruno, Mivelle Mathieu
Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
Nanophotonics. 2023 May 15;12(12):2115-2120. doi: 10.1515/nanoph-2022-0772. eCollection 2023 Jun.
The inverse Faraday effect is a magneto-optical process allowing the magnetization of matter by an optical excitation carrying a non-zero spin of light. This phenomenon was considered until now as symmetric; right or left circular polarizations generate magnetic fields oriented in the direction of light propagation or in the counter-propagating direction. Here, we demonstrate that by manipulating the spin density of light in a plasmonic nanostructure, we generate a chiral inverse Faraday effect, creating a strong magnetic field of 500 mT only for one helicity of the light, the opposite helicity producing this effect only for the mirror structure. This new optical concept opens the way to the generation of magnetic fields with unpolarized light, finding application in the ultrafast manipulation of magnetic domains and processes, such as spin precession, spin currents and waves, magnetic skyrmion or magnetic circular dichroism, with direct applications in data storage and data processing technologies.
逆法拉第效应是一种磁光过程,它允许通过携带非零光自旋的光激发来使物质磁化。直到现在,这种现象都被认为是对称的;右旋或左旋圆偏振会产生沿光传播方向或反向传播方向定向的磁场。在此,我们证明,通过在等离子体纳米结构中操纵光的自旋密度,我们产生了一种手性逆法拉第效应,仅对光的一种螺旋性产生500 mT的强磁场,相反的螺旋性仅对镜像结构产生这种效应。这一新的光学概念为利用非偏振光产生磁场开辟了道路,可应用于磁畴和诸如自旋进动、自旋电流和波、磁斯格明子或磁圆二色性等过程的超快操纵,在数据存储和数据处理技术中有直接应用。