Yang Xingyu, Mou Ye, Zapata Romeo, Reynier Benoît, Gallas Bruno, Mivelle Mathieu
Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
Nanophotonics. 2023 Jan 27;12(4):687-694. doi: 10.1515/nanoph-2022-0488. eCollection 2023 Feb.
The inverse Faraday effect (IFE) generates magnetic fields by optical excitation only. Since its discovery in the 60 s, it was believed that only circular polarizations could magnetize matter by this magneto-optical phenomenon. Here, we demonstrate the generation of an IFE via a linear polarization of light. This new physical concept results from the local manipulation of light by a plasmonic nano-antenna. We demonstrate that a gold nanorod excited by a linear polarization generates non-zero magnetic fields by IFE when the incident polarization of the light is not parallel to the long axis of the rod. We show that this dissymmetry generates hot spots of local non-vanishing spin densities (local elliptical polarization state), introducing the concept of super circular light, allowing this magnetization. Moreover, by varying the angle of the incident linear polarization with respect to the nano-antenna, we demonstrate the on-demand flipping of the magnetic field orientation. Finally, this linear IFE generates a magnetic field 25 times stronger than a gold nanoparticle via a classical IFE. Because of its all-optical character, this light-matter interaction opens the way to ultrafast nanomanipulation of magnetic processes such as domain reversal, skyrmions, circular dichroism, control of the spin, its currents, and waves, among others.
逆法拉第效应(IFE)仅通过光激发产生磁场。自20世纪60年代发现以来,人们一直认为只有圆偏振光才能通过这种磁光现象使物质磁化。在此,我们展示了通过线偏振光产生逆法拉第效应。这一新的物理概念源于等离子体纳米天线对光的局部操控。我们证明,当光的入射偏振方向不与金纳米棒的长轴平行时,由线偏振光激发的金纳米棒会通过逆法拉第效应产生非零磁场。我们表明,这种不对称性会产生局部非零自旋密度的热点(局部椭圆偏振态),引入了超圆光的概念,从而实现这种磁化。此外,通过改变入射线性偏振光相对于纳米天线的角度,我们展示了磁场方向的按需翻转。最后,这种线性逆法拉第效应产生的磁场比通过经典逆法拉第效应的金纳米颗粒强25倍。由于其全光特性,这种光与物质的相互作用为超快纳米操纵磁过程开辟了道路,如磁畴反转、斯格明子、圆二色性、自旋及其电流和波的控制等。