Vinciguerra Daniele, Yang Jane, Georgiou Panagiotis G, Snell Katherine, Pesenti Théo, Collins Jeffrey, Tamboline Mikayla, Xu Shili, van Dam R Michael, Messina Kathryn M M, Hevener Andrea L, Maynard Heather D
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.
California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.
ACS Cent Sci. 2024 Oct 2;10(11):2036-2047. doi: 10.1021/acscentsci.4c00937. eCollection 2024 Nov 27.
While glucose-responsive insulin delivery systems are in widespread clinical use to treat insulin insufficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains understudied. A self-regulated glucagon release material is highly desired to mitigate the potential risks of severe insulin-induced hypoglycemia. Here, we describe a glucose-responsive polymeric nanosystem with glucagon covalently grafted to the end-group. Under normoglycemic conditions, phenylboronic acid units in the polymer chain reversibly bind glucose, triggering self-assembly of the conjugate into micelles. During hypoglycemia, however, the micelle disassembles into its original, unimeric state, revealing the active glucagon conjugate. The formulation showed a 5-fold increase in activity compared to native glucagon when tested . Glucagon-loaded micelles injected into mice prevented or reversed deep hypoglycemia when administered prior to or during an insulin challenge. Glucagon release was only observed at or below the counterregulatory threshold and not during normoglycemia or moderate hypoglycemia. The acute and chronic toxicity analysis, along with μPET/μCT imaging, established the biosafety profile of this formulation and demonstrated no organ accumulation. This proof-of-concept work is the first step toward development of a translational, stimuli-responsive glucagon delivery platform to control glycemia.
虽然葡萄糖响应性胰岛素递送系统在临床上广泛用于治疗胰岛素不足,但用于急性低血糖治疗的按需补充胰高血糖素仍未得到充分研究。非常需要一种自我调节的胰高血糖素释放材料来减轻严重胰岛素诱导的低血糖的潜在风险。在这里,我们描述了一种葡萄糖响应性聚合物纳米系统,其中胰高血糖素共价接枝到端基上。在正常血糖条件下,聚合物链中的苯硼酸单元可逆地结合葡萄糖,触发共轭物自组装成胶束。然而,在低血糖期间,胶束分解成其原始的单体状态,暴露出活性胰高血糖素共轭物。在测试时,该制剂的活性比天然胰高血糖素增加了5倍。在胰岛素攻击之前或期间给予小鼠注射载有胰高血糖素的胶束可预防或逆转严重低血糖。仅在反调节阈值或低于该阈值时观察到胰高血糖素释放,而在正常血糖或中度低血糖期间未观察到。急性和慢性毒性分析以及μPET/μCT成像确定了该制剂的生物安全性概况,并表明没有器官蓄积。这项概念验证工作是朝着开发用于控制血糖的转化性、刺激响应性胰高血糖素递送平台迈出的第一步。