Wen Yunjie, Li Yutao, Chu Henry C W, Cheng Shibo, Zeng Yong
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
ACS Cent Sci. 2024 Oct 21;10(11):2059-2071. doi: 10.1021/acscentsci.4c01094. eCollection 2024 Nov 27.
Confinement of molecules occurs ubiquitously in nature and fundamentally affects their properties and reactions. Developing synthetic confinement systems capable of precise modulation of chemical reactions is critical to understanding the underlying mechanisms and to promoting numerous applications including biosensing. However, current nanoconfinement systems often require sophisticated fabrication and operation. Here we report a simplified nanoconfinement approach termed onfigurable ydromechanical nzyme odulation by anoconfinement andscaping f hemical inetics (CHEMNLOCK). This approach exploits a simple micropost device to generate an array of nanogaps with tunable geometries, enabling flexible spatial modulation of the kinetics of surface-bound enzymatic reactions and substantial enhancement of single-molecule reactions. We envision that the CHEMNLOCK concept could pave a new way for developing scalable and practical nanoconfinement systems with profound impacts on biosensing and clinical diagnostics.
分子受限现象在自然界中普遍存在,并从根本上影响其性质和反应。开发能够精确调节化学反应的合成受限系统对于理解潜在机制以及促进包括生物传感在内的众多应用至关重要。然而,当前的纳米受限系统通常需要复杂的制造和操作。在此,我们报告一种简化的纳米受限方法,称为通过纳米限域和化学动力学逃逸实现可配置流体力学酶调节(CHEMNLOCK)。这种方法利用一个简单的微柱装置来生成一系列具有可调几何形状的纳米间隙,从而能够对表面结合的酶促反应动力学进行灵活的空间调节,并显著增强单分子反应。我们设想,CHEMNLOCK概念可为开发具有可扩展性和实用性的纳米受限系统开辟一条新途径,对生物传感和临床诊断产生深远影响。