Liu Weilin, McLeod Euan
Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd, Tucson, AZ 85719, USA.
Nanophotonics. 2023 Oct 23;12(22):4157-4173. doi: 10.1515/nanoph-2023-0423. eCollection 2023 Nov.
Metasurface design tends to be tedious and time-consuming based on sweeping geometric parameters. Common numerical simulation techniques are slow for large areas, ultra-fine grids, and/or three-dimensional simulations. Simulation time can be reduced by combining the principle of the discrete dipole approximation (DDA) with analytical solutions for light scattered by a dipole near a flat surface. The DDA has rarely been used in metasurface design, and comprehensive benchmarking comparisons are lacking. Here, we compare the accuracy and speed of three DDA methods-substrate discretization, two-dimensional Cartesian Green's functions, and one-dimensional (1D) cylindrical Green's functions-against the finite difference time domain (FDTD) method. We find that the 1D cylindrical approach performs best. For example, the -polarized field scattered from a silica-substrate-supported 600 × 180 × 60 nm gold elliptic nanocylinder discretized into 642 dipoles is computed with 0.78 % pattern error and 6.54 % net power error within 294 s, which is 6 times faster than FDTD. Our 1D cylindrical approach takes advantage of parallel processing and also gives transmitted field solutions, which, to the best of our knowledge, is not found in existing tools. We also examine the differences among four polarizability models: Clausius-Mossotti, radiation reaction, lattice dispersion relation, and digitized Green's function, finding that the radiation reaction dipole model performs best in terms of pattern error, while the digitized Green's function has the lowest power error.
基于扫描几何参数的超表面设计往往既繁琐又耗时。对于大面积、超细网格和/或三维模拟,常见的数值模拟技术速度较慢。通过将离散偶极近似(DDA)原理与平面附近偶极散射光的解析解相结合,可以减少模拟时间。DDA在超表面设计中很少被使用,并且缺乏全面的基准比较。在这里,我们将三种DDA方法——衬底离散化、二维笛卡尔格林函数和一维(1D)圆柱格林函数——的精度和速度与有限差分时域(FDTD)方法进行了比较。我们发现一维圆柱方法表现最佳。例如,对于一个由二氧化硅衬底支撑的、离散为642个偶极的600×180×60 nm金椭圆纳米柱散射的 - 极化场,在294秒内计算得到的方向图误差为0.78%,净功率误差为6.54%,比FDTD快6倍。我们的一维圆柱方法利用了并行处理,并且还给出了透射场解,据我们所知,现有工具中没有这种解。我们还研究了四种极化率模型之间的差异:克劳修斯 - 莫索蒂模型、辐射反应模型、晶格色散关系模型和数字化格林函数模型,发现辐射反应偶极模型在方向图误差方面表现最佳,而数字化格林函数的功率误差最低。