Yuan Xinyao, Xu Quan, Lang Yuanhao, Yao Zhibo, Jiang Xiaohan, Li Yanfeng, Zhang Xueqian, Han Jiaguang, Zhang Weili
Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China.
Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
Nanophotonics. 2024 Feb 21;13(6):955-963. doi: 10.1515/nanoph-2023-0931. eCollection 2024 Mar.
Over the past decade, orbital angular momentum has garnered considerable interest in the field of plasmonics owing to the emergence of surface-confined vortices, known as plasmonic vortices. Significant progress has been made in the generation and manipulation of plasmonic vortices, which broadly unveil the natures of plasmonic spin-orbit coupling and provide accessible means for light-matter interactions. However, traditional characterizations in the frequency domain miss some detailed information on the plasmonic vortex evolution process. Herein, an exotic spin-orbit coupling phenomenon is demonstrated. More specifically, we theoretically investigated and experimentally verified a temporally deuterogenic vortex mode, which can be observed only in the time domain and interferes destructively in the intensity field. The spatiotemporal evolution of this concomitant vortex can be tailored with different designs and incident beams. This work extends the fundamental understanding of plasmonic spin-orbit coupling and provides a unique optical force manipulation strategy, which may fuel plasmonic research and applications in the near future.
在过去十年中,由于被称为表面等离激元涡旋的表面受限涡旋的出现,轨道角动量在等离激元学领域引起了广泛关注。在表面等离激元涡旋的产生和操纵方面已经取得了重大进展,这广泛地揭示了表面等离激元自旋 - 轨道耦合的本质,并为光与物质相互作用提供了可行的手段。然而,传统的频域表征遗漏了关于表面等离激元涡旋演化过程的一些详细信息。在此,展示了一种奇特的自旋 - 轨道耦合现象。更具体地说,我们从理论上进行了研究,并通过实验验证了一种时间衍生涡旋模式,该模式仅能在时域中观察到,并且在强度场中产生相消干涉。这种伴随涡旋的时空演化可以通过不同的设计和入射光束进行调控。这项工作扩展了对表面等离激元自旋 - 轨道耦合的基本理解,并提供了一种独特的光力操纵策略,这可能在不久的将来推动表面等离激元学的研究和应用。