文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Plasmonic tweezers: for nanoscale optical trapping and beyond.

作者信息

Zhang Yuquan, Min Changjun, Dou Xiujie, Wang Xianyou, Urbach Hendrik Paul, Somekh Michael G, Yuan Xiaocong

机构信息

Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.

Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands.

出版信息

Light Sci Appl. 2021 Mar 17;10(1):59. doi: 10.1038/s41377-021-00474-0.


DOI:10.1038/s41377-021-00474-0
PMID:33731693
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7969631/
Abstract

Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/2b61036cb41e/41377_2021_474_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/b85c4233417e/41377_2021_474_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/a0c6be3e7740/41377_2021_474_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/e3cfdc7aa449/41377_2021_474_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/c5708ea49ef6/41377_2021_474_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/3b4e819f4ed7/41377_2021_474_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/9371dc210e58/41377_2021_474_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/4e9e5df3e24f/41377_2021_474_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/f126d324c7c5/41377_2021_474_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/50e56242fee9/41377_2021_474_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/36dc0a1d8900/41377_2021_474_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/a07369e8509b/41377_2021_474_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/7079b10ade5a/41377_2021_474_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/5a48d3756dd9/41377_2021_474_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/4d355d397e92/41377_2021_474_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/3d5676354712/41377_2021_474_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/5e2b5cac4427/41377_2021_474_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/218d72817791/41377_2021_474_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/2b61036cb41e/41377_2021_474_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/b85c4233417e/41377_2021_474_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/a0c6be3e7740/41377_2021_474_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/e3cfdc7aa449/41377_2021_474_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/c5708ea49ef6/41377_2021_474_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/3b4e819f4ed7/41377_2021_474_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/9371dc210e58/41377_2021_474_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/4e9e5df3e24f/41377_2021_474_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/f126d324c7c5/41377_2021_474_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/50e56242fee9/41377_2021_474_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/36dc0a1d8900/41377_2021_474_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/a07369e8509b/41377_2021_474_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/7079b10ade5a/41377_2021_474_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/5a48d3756dd9/41377_2021_474_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/4d355d397e92/41377_2021_474_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/3d5676354712/41377_2021_474_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/5e2b5cac4427/41377_2021_474_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/218d72817791/41377_2021_474_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/7969631/2b61036cb41e/41377_2021_474_Fig18_HTML.jpg

相似文献

[1]
Plasmonic tweezers: for nanoscale optical trapping and beyond.

Light Sci Appl. 2021-3-17

[2]
Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.

J Vis Exp. 2011-9-27

[3]
Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.

ACS Nano. 2021-4-27

[4]
Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.

J Phys Chem Lett. 2014-9-4

[5]
Plasmonic trapping with a gold nanopillar.

Chemphyschem. 2012-5-23

[6]
Origin and Future of Plasmonic Optical Tweezers.

Nanomaterials (Basel). 2015-6-12

[7]
Plasmonic tweezers for optical manipulation and biomedical applications.

Analyst. 2020-8-24

[8]
Optothermal Manipulations of Colloidal Particles and Living Cells.

Acc Chem Res. 2018-5-25

[9]
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.

Nat Nanotechnol. 2020-11

[10]
Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.

Nano Lett. 2023-6-14

引用本文的文献

[1]
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications.

Micromachines (Basel). 2025-8-13

[2]
Ultra-long-range optical pulling with an optical nanofibre.

Nat Commun. 2025-8-11

[3]
All-on-chip reconfigurable generation of scalar and vectorial orbital angular momentum beams.

Light Sci Appl. 2025-6-30

[4]
Insulator-Based Dielectrophoresis for Purifying Semiconductor Industry-Compatible Chemicals with Trace Nanoparticles.

JACS Au. 2025-5-15

[5]
Single-molecule manipulation and detection by WGM-coupled photonic nanojets.

Discov Nano. 2025-4-30

[6]
Long-Distance Autonomous Navigation of Optical Microrobotic Swarms in Complex Environments.

Adv Intell Syst. 2024-12

[7]
1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses.

Small Sci. 2023-8-17

[8]
Optical trapping of mesoscale particles and atoms in hollow-core optical fibers: principle and applications.

Light Sci Appl. 2025-3-31

[9]
Solving non-Hermitian physics for optical manipulation on a quantum computer.

Light Sci Appl. 2025-3-21

[10]
Light-driven plasmonic microrobot for nanoparticle manipulation.

Nat Commun. 2025-3-15

本文引用的文献

[1]
Temperature mediated 'photonic hook' nanoparticle manipulator with pulsed illumination.

Nanoscale Adv. 2020-4-27

[2]
Opto-thermophoretic fiber tweezers.

Nanophotonics. 2019-3

[3]
Solenoidal optical forces from a plasmonic Archimedean spiral.

Phys Rev A (Coll Park). 2019-7

[4]
Spatiotemporal manipulation on focusing and propagation of surface plasmon polariton pulses.

Opt Express. 2020-10-26

[5]
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.

Nat Nanotechnol. 2020-11

[6]
Tailored optical potentials for Cs atoms above waveguides with focusing dielectric nano-antenna.

Opt Lett. 2020-7-1

[7]
Dual Coaxial Longitudinal Polarization Vortex Structures.

Phys Rev Lett. 2020-3-13

[8]
Adhesion layer influence on controlling the local temperature in plasmonic gold nanoholes.

Nanoscale. 2020-1-28

[9]
Trapping metallic particles using focused Bloch surface waves.

Nanoscale. 2020-1-23

[10]
Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow.

Nano Lett. 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索