Suppr超能文献

一种新的费尔马蒂安模糊类斯皮尔曼相关系数及其在通过多准则决策方法评估不安全问题中的应用。

A new Fermatean fuzzy Spearman-like correlation coefficient and its application in evaluating insecurity problem via multi-criteria decision-making approach.

作者信息

Ejegwa Paul Augustine, Kausar Nasreen, Aydin Nezir, Feng Yuming, Olanrewaju Oludolapo Akanni

机构信息

Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.

Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Esenler 34220, Istanbul, Turkiye.

出版信息

Heliyon. 2024 Nov 15;10(22):e40403. doi: 10.1016/j.heliyon.2024.e40403. eCollection 2024 Nov 30.

Abstract

The problem of insecurity is a global crisis with adverse effects on lives and properties. Fermatean fuzzy correlation coefficient is a dependable method for handling imprecision, which is the main bottleneck of insecurity assessment. A number of Fermatean fuzzy correlation coefficient methods have been developed. Based on Spearman's correlation coefficient, an innovative Fermatean fuzzy correlation coefficient method is built to enhance trustworthy insecurity assessment. The existing Fermatean fuzzy correlation coefficient methods are evaluated, and their shortcomings are identified in order to validate the construction of a new Fermatean fuzzy correlation coefficient method. The drawbacks of the existing methods lead us into building a new Fermatean fuzzy correlation coefficient method by using the Spearman's correlation coefficient approach, which has the potential of overcoming the drawbacks of the existing Fermatean fuzzy correlation coefficient methods. In addition, some theoretical findings are provided to support the strength of the novel Fermatean fuzzy correlation coefficient method and it is shown that the new method satisfies the Fermatean fuzzy correlation coefficient requirements. Furthermore, the novel Fermatean fuzzy correlation coefficient method is applied to assess the insecurity situation in the North-Central Region of Nigeria to furnish intended tourists with relevant travel advice. To demonstrate the inherent significance of the novel Fermatean fuzzy correlation coefficient method, we compare its effectiveness to that of the extant Fermatean fuzzy correlation coefficient methods. The results of the comparison show the superiority of the novel Fermatean fuzzy correlation coefficient method over the existing ones in terms of reliability, consistency, precision and compliance with the Fermatean fuzzy correlation coefficient axioms. Ultimately, it is discovered that the new method can effectively address hesitations related to insecurity assessment.

摘要

不安全问题是一场对生命和财产产生不利影响的全球危机。费马模糊相关系数是处理不精确性的可靠方法,而不精确性是不安全评估的主要瓶颈。已经开发了许多费马模糊相关系数方法。基于斯皮尔曼相关系数,构建了一种创新的费马模糊相关系数方法,以增强可靠的不安全评估。对现有的费马模糊相关系数方法进行了评估,并确定了它们的缺点,以验证新的费马模糊相关系数方法的构建。现有方法的缺点促使我们采用斯皮尔曼相关系数方法构建一种新的费马模糊相关系数方法,该方法有可能克服现有费马模糊相关系数方法的缺点。此外,还提供了一些理论结果来支持新型费马模糊相关系数方法的优势,并表明新方法满足费马模糊相关系数的要求。此外,新型费马模糊相关系数方法被应用于评估尼日利亚中北部地区的不安全状况,为有意前往的游客提供相关旅行建议。为了证明新型费马模糊相关系数方法的内在意义,我们将其有效性与现有的费马模糊相关系数方法进行了比较。比较结果表明,新型费马模糊相关系数方法在可靠性、一致性、精度以及符合费马模糊相关系数公理方面优于现有方法。最终,发现新方法可以有效地解决与不安全评估相关的犹豫问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d8/11616503/34070d2e3316/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验