Tuxun Hairegu, Cai Zefeng, Ji Min, Zhang Baobao, Zhang Chengyun, Li Jinping, Yu Xudong, Fu Zhengkun, Zhang Zhenglong, Zheng Hairong
School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China.
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006, China.
Nanophotonics. 2022 Jan 27;11(5):979-986. doi: 10.1515/nanoph-2021-0604. eCollection 2022 Feb.
Understanding how plasmonic nanostructures generate heat upon exposure to light, and thus increase the local temperature of the surrounding medium is important for many applications. Reliable temperature manipulation requires analyzing the local temperature distribution as a function of laser density. In this work, an optical heating system containing silver nano-islands (Ag NIs) is designed to enable heat generation at the micro/nanometer scale and the local temperature can reach 1458 K. The heat generation by Ag NIs exposed to near-IR laser light, and the temperature distribution, are detected via the fluorescence intensity ratio technique. It was found that the temperature of the system can be controlled by changing the excitation power. Furthermore, the temperature-dependent UCL of a single YO:Yb/Er microrod is studied by taking advantage of the controllable local temperature in the optical heating system. It was found that the color of the upconversion luminescence can be tuned by managing the local temperature, and conversely, the local temperature at the optical heater can be monitored by observing the color change of the rare-earth microrod. The real-time manipulation of plasmonic heating offers an opportunity to control outcomes of thermo-plasmonic effects, which then enables a myriad of practical applications.
了解等离子体纳米结构在光照下如何产生热量,从而提高周围介质的局部温度,对于许多应用来说都很重要。可靠的温度控制需要分析作为激光密度函数的局部温度分布。在这项工作中,设计了一个包含银纳米岛(Ag NIs)的光学加热系统,以实现微/纳米尺度的热量产生,局部温度可达1458 K。通过荧光强度比技术检测Ag NIs在近红外激光照射下的发热情况以及温度分布。研究发现,通过改变激发功率可以控制系统的温度。此外,利用光学加热系统中可控的局部温度,研究了单个YO:Yb/Er微棒的温度依赖性上转换发光(UCL)。研究发现,通过控制局部温度可以调节上转换发光的颜色,反之,通过观察稀土微棒的颜色变化可以监测光学加热器处的局部温度。等离子体加热的实时控制为控制热等离子体效应的结果提供了机会,进而实现了众多实际应用。