Suppr超能文献

超越石墨烯的新兴二维碳烯的超快光子学应用。

Ultrafast photonics applications of emerging 2D-Xenes beyond graphene.

作者信息

Zhang Huanian, Sun Shuo, Shang Xinxin, Guo Bo, Li Xiaohui, Chen Xiaohan, Jiang Shouzhen, Zhang Han, Ågren Hans, Zhang Wenfei, Wang Guomei, Lu Cheng, Fu Shenggui

机构信息

School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.

Shandong Ruixing Single Mode Laser Technology Co. Ltd, Zibo 255049, China.

出版信息

Nanophotonics. 2022 Mar 25;11(7):1261-1284. doi: 10.1515/nanoph-2022-0045. eCollection 2022 Mar.

Abstract

Driven by new two-dimensional materials, great changes and progress have taken place in the field of ultrafast photonics in recent years. Among them, the emerging single element two-dimensional materials (Xenes) have also received much attention due to their special physical and photoelectric properties including tunable broadband nonlinear saturable absorption, ultrafast carrier recovery rate, and ultrashort recovery time. In this review, the preparation methods of Xenes and various integration strategies are detailedly introduced at first. Then, we summarize the outcomes achieved by Xenes-based (beyond graphene) fiber lasers and make classifications based on the characteristics of output pulses according to the materials characterization and nonlinear optical absorption properties. Finally, an outlook of the future opportunities and challenges of ultrafast photonics devices based on Xenes and other 2D materials are highlighted, and we hope this review will promote their extensive applications in ultrafast photonics technology.

摘要

近年来,在新型二维材料的推动下,超快光子学领域发生了巨大的变化和进步。其中,新兴的单元素二维材料(Xenes)因其特殊的物理和光电特性,包括可调谐宽带非线性饱和吸收、超快载流子恢复率和超短恢复时间,也受到了广泛关注。在这篇综述中,首先详细介绍了Xenes的制备方法和各种集成策略。然后,我们总结了基于Xenes(超越石墨烯)的光纤激光器所取得的成果,并根据材料表征和非线性光学吸收特性,按照输出脉冲的特点进行了分类。最后,重点展望了基于Xenes和其他二维材料的超快光子学器件未来的机遇和挑战,我们希望这篇综述将推动它们在超快光子学技术中的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e2/11501453/dc24c477c526/j_nanoph-2022-0045_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验