Suppr超能文献

MXenes中宽带光致物种的动力学及光探测应用

Dynamics of broadband photoinduced species and enabled photodetection in MXenes.

作者信息

Zhang Feng, Cao Rui, Li Zhongjun, Gao Siyan, Chen Hualong, Guo Jia, Zhang Yule, Al-Amoudi Bashaer Omar, Wageh Swelm, Al-Ghamdi Ahmed A, Zhang Xi, Zhang Han

机构信息

Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.

Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Nanophotonics. 2022 May 17;11(13):3139-3148. doi: 10.1515/nanoph-2022-0170. eCollection 2022 Jun.

Abstract

Dynamics of photoinduced species, as a key parameter for nanomaterials plays a significantly role in the performance of optoelectronic devices. In this work, the origin of broadband optical response for the emerging TiCT MXene is revealed by transient spectroscopic analysis. From ultraviolet to infrared, the steady-state and transient optical responses present wavelength-related features. The carrier lifetime is found to change from femtosecond to nanosecond time scale dominated by various photoinduced species, i.e., carrier and surface plasmon. The unique optoelectronic character enables photodetection. This fundamental study on carrier, plasmon dynamics, and application in photodetection is helpful for exploring MXene-based optoelectronic devices.

摘要

光致物种的动力学作为纳米材料的关键参数,在光电器件性能中起着重要作用。在这项工作中,通过瞬态光谱分析揭示了新兴的TiCT MXene宽带光学响应的起源。从紫外到红外,稳态和瞬态光学响应呈现出与波长相关的特征。发现载流子寿命从飞秒到纳秒时间尺度变化,由各种光致物种主导,即载流子和表面等离子体。独特的光电特性实现了光电探测。这项关于载流子、等离子体动力学及其在光电探测中的应用的基础研究,有助于探索基于MXene的光电器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea10/11501830/d4a0eddf194a/j_nanoph-2022-0170_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验