Suppr超能文献

由无金属全有机结构实现的可调谐窄带激子光学塔姆态。

Tunable narrowband excitonic Optical Tamm states enabled by a metal-free all-organic structure.

作者信息

Castillo Miguel, Cunha Diogo, Estévez-Varela Carla, Miranda Daniel, Pastoriza-Santos Isabel, Núñez-Sánchez Sara, Vasilevskiy Mikhail, Lopez-Garcia Martin

机构信息

Natural and Artificial Photonic Structures and Devices Group, INL-International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.

Faculty of Physics/Faculty of Optics and Optometry, Campus Vida S/N, University of Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.

出版信息

Nanophotonics. 2022 Nov 7;11(21):4879-4888. doi: 10.1515/nanoph-2022-0419. eCollection 2022 Dec.

Abstract

Optical Tamm states (OTS) are confined optical modes that can occur at the interface between two highly reflective structures. However, due to the strong reflectance required, their implementation with highly processable and metal-free flexible materials has proven challenging. Herein, we develop the first structure supporting OTS based only on organic polymeric materials, demonstrating a photonic platform based on non-critical, widely available and easily processable materials. The structures fabricated present large areas and consist of a narrowband multi-layered polymeric distributed Bragg reflector (DBR) followed by a thin film of J-aggregate molecular excitonic material that can act as a highly reflective surface within a narrowband range. We take advantage of the narrowband spectral response of the DBR and of the reflective molecular layer to tune the OTS band by varying the periodicity of the multilayer, opening the door for the fabrication of OTS structures based on lightweight integrable excitonic devices with cost-effective procedures.

摘要

光学塔姆态(OTS)是一种受限光学模式,可出现在两个高反射结构的界面处。然而,由于所需的强反射率,用高度可加工且无金属的柔性材料实现它们已被证明具有挑战性。在此,我们开发了首个仅基于有机聚合物材料支持OTS的结构,展示了一个基于非关键、广泛可用且易于加工材料的光子平台。所制备的结构具有大面积,由一个窄带多层聚合物分布布拉格反射器(DBR)以及一层J - 聚集体分子激子材料薄膜组成,该薄膜可在窄带范围内充当高反射表面。我们利用DBR和反射分子层的窄带光谱响应,通过改变多层的周期性来调谐OTS带,为基于具有成本效益的工艺的轻质可集成激子器件制造OTS结构打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e9b/11502094/89366a79a353/j_nanoph-2022-0419_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验